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Sjeotives

B Use the Integral Test to determine whether an infinite
series converges or diverges.

B Use properties of p-series and harmonic series.



The Integral Test



THEOREM 9.170 The Integral Test

If f is positive, continuous, and decreasing for x = 1 and a, = f(n), then

2{&,, and me(x)ﬂ'x

either both converge or both diverge.




!ample 1 — Using the Integral Test

n

Apply the Integral Test to the series i

n=1 ﬂ2 T 1
Solution:
The function f(x) = x/(x*> + 1) js positive and continuous for
x = 1.

To determine whether f is decreasing, find the derivative.
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!xample 1 — Solution

So, f(x) <0 for x > 1 and it follows that f satisfies the
conditions for the Integral Test.

You can integrate to obtain
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So, the series diverges.

cont'd



p-Series and Harmonic Series



!Series and Harmonic Series

A second type of series has a simple arithmetic test for
convergence or divergence. A series of the form

== l 1 1 |
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IS a p-series, where p is a positive constant. For p = 1,

the series
= | 11

E —=14+=-+=-4+--- Harmonic series
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IS the harmonic series.



!Series and Harmonic Series

A general harmonic series of the form Z1/(an + b). In
music, strings of the same material, diameter, and tension,
whose lengths form a harmonic series, produce harmonic
tones.

Convergence of p-Series

The p-series
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converges for p > 1, and diverges for0 < p = 1.
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!ample 3 — Convergent and Divergent p-Series

Discuss the convergence or divergence of (a) the harmonic
series and (b) the p-series with p = 2.

Solution:
a. From Theorem 9.11, it follows that the harmonic series

f :_+1+1+.. =1
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diverges.

b. From Theorem 9.11, it follows that the p-series
111

21_
—==+=+=+- - p=2
2 2 2 2
“~ n 1 2 3

converges.
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