

Copyright © Cengage Learning. All rights reserved.

Copyright © Cengage Learning. All rights reserved.

Objectives

- Use the Alternating Series Test to determine whether an infinite series converges.
- Use the Alternating Series Remainder to approximate the sum of an alternating series.
 - Classify a convergent series as absolutely or conditionally convergent.
 - Rearrange an infinite series to obtain a different sum.

Alternating Series

Alternating Series

The simplest series that contain both positive and negative terms is an **alternating series**, whose terms alternate in sign. For example, the geometric series

$$\sum_{n=0}^{\infty} \left(-\frac{1}{2}\right)^n = \sum_{n=0}^{\infty} (-1)^n \frac{1}{2^n}$$
$$= 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \frac{1}{16} - \cdots$$

is an alternating geometric series with $r = -\frac{1}{2}$.

Alternating series occur in two ways: either the odd terms are negative or the even terms are negative.

Alternating Series

THEOREM 9.14 Alternating Series Test

Let $a_n > 0$. The alternating series

$$\sum_{n=1}^{\infty} (-1)^n a_n \text{ and } \sum_{n=1}^{\infty} (-1)^{n+1} a_n$$

converge when the two conditions listed below are met.

1.
$$\lim_{n \to \infty} a_n = 0$$

2.
$$a_{n+1} \le a_n$$
, for all n

Example 1 – Using the Alternating Series Test

Determine the convergence or divergence of $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$.

Solution: Note that $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{1}{n} = 0.$

So, the first condition of Theorem 9.14 is satisfied. Also note that the second condition of Theorem 9.14 is satisfied because

$$a_{n+1} = \frac{1}{n+1} \le \frac{1}{n} = a_n$$

for all *n*.

So, applying the Alternating Series Test, you can conclude that the series converges.

Alternating Series Remainder

Alternating Series Remainder

For a convergent alternating series, the partial sum S_N can be a useful approximation for the sum S of the series. The error involved in using $S \approx S_N$ is the remainder $R_N = S - S_N$.

THEOREM 9.15 Alternating Series Remainder

If a convergent alternating series satisfies the condition $a_{n+1} \leq a_n$, then the absolute value of the remainder R_N involved in approximating the sum S by S_N is less than (or equal to) the first neglected term. That is,

$$|S - S_N| = |R_N| \le a_{N+1}.$$

Example 4 – Approximating the Sum of an Alternating Series

Approximate the sum of the following series by its first six terms.

$$\sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{1}{n!}\right) = \frac{1}{1!} - \frac{1}{2!} + \frac{1}{3!} - \frac{1}{4!} + \frac{1}{5!} - \frac{1}{6!} + \cdots$$

Solution:

The series converges by the Alternating Series Test because

$$\frac{1}{(n+1)!} \le \frac{1}{n!} \quad \text{and} \quad \lim_{n \to \infty} \frac{1}{n!} = 0.$$

Example 4 – Solution

The sum of the first six terms is

$$S_6 = 1 - \frac{1}{2} + \frac{1}{6} - \frac{1}{24} + \frac{1}{120} - \frac{1}{720} = \frac{91}{144} \approx 0.63194$$

and, by the Alternating Series Remainder, you have

$$|S - S_6| = |R_6| \le a_7 = \frac{1}{5040} \approx 0.0002.$$

So, the sum S lies between 0.63194 - 0.0002 and 0.63194 + 0.0002, and you have

 $0.63174 \leq S \leq 0.63214.$

cont'd

Absolute and Conditional Convergence

Absolute and Conditional Convergence

Occasionally, a series may have both positive and negative terms and not be an alternating series. For instance, the series

$$\sum_{n=1}^{\infty} \frac{\sin n}{n^2} = \frac{\sin 1}{1} + \frac{\sin 2}{4} + \frac{\sin 3}{9} + \cdots$$

has both positive and negative terms, yet it is not an alternating series. One way to obtain some information about the convergence of this series is to investigate the convergence of the series

$$\sum_{n=1}^{\infty} \left| \frac{\sin n}{n^2} \right|.$$

Absolute and Conditional Convergence

By direct comparison, you have $|\sin n| \le 1$ for all *n*, so

$$\left|\frac{\sin n}{n^2}\right| \le \frac{1}{n^2}, \quad n \ge 1.$$

Therefore, by the Direct Comparison Test, the series $\sum \left| \frac{\sin n}{n^2} \right|$ converges. The next theorem tells you that the original series also converges.

THEOREM 9.16 Absolute Convergence

If the series $\sum |a_n|$ converges, then the series $\sum a_n$ also converges.

Absolute and Conditional Convergence

The converse of Theorem 9.16 is not true. For instance, the **alternating harmonic series**

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = \frac{1}{1} - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$$

converges by the Alternating Series Test. Yet the harmonic series diverges. This type of convergence is called **conditional.**

Definitions of Absolute and Conditional Convergence

- **1.** The series Σa_n is absolutely convergent when $\Sigma |a_n|$ converges.
- 2. The series $\sum a_n$ is conditionally convergent when $\sum a_n$ converges but $\sum |a_n|$ diverges.

Example 6 – Absolute and Conditional Convergence

Determine whether each of the series is convergent or divergent. Classify any convergent series as absolutely or conditionally convergent.

a.
$$\sum_{n=0}^{\infty} \frac{(-1)^n n!}{2^n} = \frac{0!}{2^0} - \frac{1!}{2^1} + \frac{2!}{2^2} - \frac{3!}{2^3} + \cdots$$

b.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}} = -\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{4}} - \cdots$$

Example 6 – Solution

- **a.** This is an alternating series, but the Alternating Series Test does not apply because the limit of the *n*th term is not zero. By the *n*th-Term Test for Divergence, however, you can conclude that this series diverges.
- **b.** The given series can be shown to be convergent by the Alternating Series Test.

Moreover, because the *p*-series

$$\sum_{n=1}^{\infty} \left| \frac{(-1)^n}{\sqrt{n}} \right| = \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{4}} + \cdots$$

diverges, the given series is *conditionally* convergent.

Rearrangement of Series

Rearrangement of Series

A finite sum such as (1 + 3 - 2 + 5 - 4) can be rearranged without changing the value of the sum. This is not necessarily true of an infinite series—it depends on whether the series is absolutely convergent (every rearrangement has the same sum) or conditionally convergent.

1. If a series is *absolutely convergent*, then its terms can be rearranged in any order without changing the sum of the series.

2. If a series is *conditionally convergent*, then its terms can be arranged to give a different sum.

Example 8 – Rearrangement of a Series

The alternating harmonic series converges to ln 2. That is,

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n} = \frac{1}{1} - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots = \ln 2.$$

Rearrange the series to produce a different sum.

Solution:

Consider the following rearrangement.

$$1 - \frac{1}{2} - \frac{1}{4} + \frac{1}{3} - \frac{1}{6} - \frac{1}{8} + \frac{1}{5} - \frac{1}{10} - \frac{1}{12} + \frac{1}{7} - \frac{1}{14} - \cdots$$

Example 8 – Solution cont'd $= \left(1 - \frac{1}{2}\right) - \frac{1}{4} + \left(\frac{1}{3} - \frac{1}{6}\right) - \frac{1}{8} + \left(\frac{1}{5} - \frac{1}{10}\right) - \frac{1}{12} + \left(\frac{1}{7} - \frac{1}{14}\right) - \cdots$ $=\frac{1}{2}-\frac{1}{4}+\frac{1}{6}-\frac{1}{8}+\frac{1}{10}-\frac{1}{12}+\frac{1}{14}-\cdot\cdot\cdot$ $=\frac{1}{2}\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\cdots\right)$ $=\frac{1}{2}(\ln 2)$

By rearranging the terms, you obtain a sum that is half the original sum.