Infinite Series

Copyright © Cengage Learning. All rights reserved.

9.8 Power Series

Copyright © Cengage Learning. All rights reserved.

Objectives

■ Understand the definition of a power series.

- Find the radius and interval of convergence of a power series.
- Determine the endpoint convergence of a power series.
- Differentiate and integrate a power series.

Power Series

Power Series

An important function $f(x)=e x$ can be represented exactly by an infinite series called a power series. For example, the power series representation for $e \times$ is

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots+\frac{x^{n}}{n!}+\cdots
$$

For each real number x, it can be shown that the infinite series on the right converges to the number ex.

Definition of Power Series

If x is a variable, then an infinite series of the form

$$
\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots+a_{n} x^{n}+\cdots
$$

is called a power series. More generally, an infinite series of the form

$$
\sum_{n=0}^{\infty} a_{n}(x-c)^{n}=a_{0}+a_{1}(x-c)+a_{2}(x-c)^{2}+\cdots+a_{n}(x-c)^{n}+\cdots
$$

is called a power series centered at c, where c is a constant.

Example 1 - Power Series

a. The following power series is centered at 0 .

$$
\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3!}+\cdots
$$

b. The following power series is centered at -1 .

$$
\sum_{n=0}^{\infty}(-1)^{n}(x+1)^{n}=1-(x+1)+(x+1)^{2}-(x+1)^{3}+\cdots
$$

c. The following power series is centered at 1 .

$$
\sum_{n=1}^{\infty} \frac{1}{n}(x-1)^{n}=(x-1)+\frac{1}{2}(x-1)^{2}+\frac{1}{3}(x-1)^{3}+\cdots
$$

Radius and Interval of Convergence

Radius and Interval of Convergence

A power series in x can be viewed as a function of x

$$
f(x)=\sum_{n=0}^{\infty} a_{n}(x-c)^{n}
$$

where the domain of f is the set of all x for which the power series converges. Of course, every power series converges at its center c because

$$
\begin{aligned}
f(c) & =\sum_{n=0}^{\infty} a_{n}(c-c)^{n} \\
& =a_{0}(1)+0+0+\cdots+0+\cdots \\
& =a_{0}
\end{aligned}
$$

Radius and Interval of Convergence

So, c always lies in the domain of f. Theorem 9.20 (to follow) states that the domain of a power series can take three basic forms: a single point, an interval centered at c, or the entire real number line, as shown in Figure 9.17.

The domain of a power series has only three basic forms: a single point, an interval centered at c, or the entire real number line.

Radius and Interval of Convergence

THEOREM 9.20 Convergence of a Power Series

For a power series centered at c, precisely one of the following is true.

1. The series converges only at c.
2. There exists a real number $R>0$ such that the series converges absolutely for

$$
|x-c|<R
$$

and diverges for

$$
|x-c|>R .
$$

3. The series converges absolutely for all x.

The number R is the radius of convergence of the power series. If the series converges only at c, then the radius of convergence is $R=0$. If the series converges for all x, then the radius of convergence is $R=\infty$. The set of all values of x for which the power series converges is the interval of convergence of the power series.

Example 2 - Finding the Radius of Convergence

Find the radius of convergence of $\sum_{n=0}^{\infty} n!x^{n}$.

Solution:

For $x=0$, you obtain

$$
f(0)=\sum_{n=0}^{\infty} n!0^{n}=1+0+0+\cdots=1 .
$$

For any fixed value of x such that $|x|>0$, let $u_{n}=n!x^{n}$.
Then

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{u_{n+1}}{u_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{(n+1)!x^{n+1}}{n!x^{n}}\right| \\
& =|x| \lim _{n \rightarrow \infty}(n+1) \\
& =\infty
\end{aligned}
$$

Example 2 - Solution

Therefore, by the Ratio Test, the series diverges for $|x|>0$ and converges only at its center, 0.

So, the radius of convergence is $R=0$.

Endpoint Convergence

Endpoint Convergence

For a power series whose radius of convergence is a finite number R, Theorem 9.20 says nothing about the convergence at the endpoints of the interval of convergence.

Each endpoint must be tested separately for convergence or divergence.

Endpoint Convergence

As a result, the interval of convergence of a power series can take any one of the six forms shown in Figure 9.18.

Radius: 0

Radius: R

$(c-R, c+R]$

Radius: ∞

$[c-R, c+R)$

$[c-R, c+R]$

Intervals of convergence

Figure 9.18

Example 5 - Finding the Interval of Convergence

Find the interval of convergence of $\sum_{n=1}^{\infty} \frac{x^{n}}{n}$.

Solution:

Letting $u_{n}=x n / n$ produces

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{u_{n+1}}{u_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{\frac{x^{n+1}}{(n+1)}}{\frac{x^{n}}{n}}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{n x}{n+1}\right| \\
& =|x|
\end{aligned}
$$

Example 5 - Solution

So, by the Ratio Test, the radius of convergence is $R=1$.
Moreover, because the series is centered at 0 , it converges in the interval $(-1,1)$.

This interval, however, is not necessarily the interval of convergence.

To determine this, you must test for convergence at each endpoint.

When $x=1$, you obtain the divergent harmonic series
$\sum_{n=1}^{\infty} \frac{1}{n}=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\cdots$.
Diverges when $x=1$

Example 5 - Solution

When $x=-1$, you obtain the convergent alternating harmonic series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}=-1+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\cdots .
$$

$$
\text { Converges when } x=-1
$$

So, the interval of convergence for the series is $[-1,1)$, as shown in Figure 9.19.

$$
\begin{aligned}
& \text { Interval: }[-1,1) \\
& \text { Radius: } R=1
\end{aligned}
$$

Figure 9.19

Differentiation and Integration of Power Series

Differentiation and Integration of Power Series

THEOREM 9.21 Properties of Functions Defined by Power Series

If the function

$$
\begin{aligned}
f(x) & =\sum_{n=0}^{\infty} a_{n}(x-c)^{n} \\
& =a_{0}+a_{1}(x-c)+a_{2}(x-c)^{2}+a_{3}(x-c)^{3}+\cdots
\end{aligned}
$$

has a radius of convergence of $R>0$, then, on the interval

$$
(c-R, c+R)
$$

f is differentiable (and therefore continuous). Moreover, the derivative and antiderivative of f are as follows.

1. $f^{\prime}(x)=\sum_{n=1}^{\infty} n a_{n}(x-c)^{n-1}$

$$
=a_{1}+2 a_{2}(x-c)+3 a_{3}(x-c)^{2}+\cdots
$$

2. $\int f(x) d x=C+\sum_{n=0}^{\infty} a_{n} \frac{(x-c)^{n+1}}{n+1}$

$$
=C+a_{0}(x-c)+a_{1} \frac{(x-c)^{2}}{2}+a_{2} \frac{(x-c)^{3}}{3}+\cdots
$$

The radius of convergence of the series obtained by differentiating or integrating a power series is the same as that of the original power series. The interval of convergence, however, may differ as a result of the behavior at the endpoints.

Example 8 - Intervals of Convergence for $f(x), f^{\prime}(x)$, and $\int f(x) d x$

Consider the function given by
$f(x)=\sum_{n=1}^{\infty} \frac{x^{n}}{n}=x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\cdots$.

Find the interval of convergence for each of the following.
a. $\int f(x) d x$
b. $f(x)$
c. $f^{\prime}(x)$

Example 8 - Solution

By Theorem 9.21, you have

$$
\begin{aligned}
f^{\prime}(x) & =\sum_{n=1}^{\infty} x^{n-1} \\
& =1+x+x^{2}+x^{3}+\cdots
\end{aligned}
$$

and

$$
\begin{aligned}
\int f(x) d x & =C+\sum_{n=1}^{\infty} \frac{x^{n+1}}{n(n+1)} \\
& =C+\frac{x^{2}}{1 \cdot 2}+\frac{x^{3}}{2 \cdot 3}+\frac{x^{4}}{3 \cdot 4}+\cdots .
\end{aligned}
$$

By the Ratio Test, you can show that each series has a radius of convergence of $R=1$.
Considering the interval $(-1,1)$ you have the following.

Example 8(a) - Solution

For $\int f(x) d x$, the series

$$
\sum_{n=1}^{\infty} \frac{x^{n+1}}{n(n+1)}
$$

$$
\text { Interval of convergence: }[-1,1]
$$

converges for $x= \pm 1$, and its interval of convergence is [-1, 1]. See Figure 9.21(a).

Interval: $[-1,1]$
Radius: $R=1$

Example 8(b) - Solution

For $f(x)$, the series

$$
\sum_{n=1}^{\infty} \frac{x^{n}}{n}
$$

Interval of convergence: $[-1,1)$

converges for $x=-1$, and diverges for $x=1$.
So, its interval of convergence is $[-1,1)$.
See Figure 9.21(b).
Interval: $[-1,1)$
Radius: $R=1$

Example 8(c) - Solution

For $f^{\prime}(x)$, the series

$$
\sum_{n=1}^{\infty} x^{n-1}
$$

diverges for $x= \pm 1$, and its interval of convergence is ($-1,1$). See Figure 9.21(c).

Interval: $(-1,1)$
Radius: $R=1$

