Infinite Series

Copyright © Cengage Learning. All rights reserved.

9.9 Representation of Functions by Power Series

Objectives

- Find a geometric power series that represents a function.
- Construct a power series using series operations.

Geometric Power Series

Geometric Power Series

Consider the function given by $f(x)=1 /(1-x)$. The form of f closely resembles the sum of a geometric series

$$
\sum_{n=0}^{\infty} a r^{n}=\frac{a}{1-r}, \quad|r|<1 .
$$

In other words, when $\mathrm{a}=1$ and $r=x$, a power series representation for $1 /(1-x)$, centered at 0 , is

$$
\begin{aligned}
\frac{1}{1-x} & =\sum_{n=0}^{\infty} a r^{n} \\
& =\sum_{n=0}^{\infty} x^{n} \\
& =1+x+x^{2}+x^{3}+\cdots, \quad|x|<1 .
\end{aligned}
$$

Geometric Power Series

Of course, this series represents $f(x)=1 /(1-x)$ only on the interval ($-1,1$), whereas f is defined for all $x \neq 1$, as shown in Figure 9.22.

To represent f in another interval, you must develop a different series.

Figure 9.22

Geometric Power Series

For instance, to obtain the power series centered at -1 , you could write

$$
\frac{1}{1-x}=\frac{1}{2-(x+1)}=\frac{1 / 2}{1-[(x+1) / 2]}=\frac{a}{1-r}
$$

which implies that $a=\frac{1}{2}$ and $r=(x+1) / 2$.
So, for $|x+1|<2$, you have

$$
\begin{aligned}
\frac{1}{1-x} & =\sum_{n=0}^{\infty}\left(\frac{1}{2}\right)\left(\frac{x+1}{2}\right)^{n} \\
& =\frac{1}{2}\left[1+\frac{(x+1)}{2}+\frac{(x+1)^{2}}{4}+\frac{(x+1)^{3}}{8}+\cdots\right],|x+1|<2
\end{aligned}
$$

which converges on the interval $(-3,1)$.

Example 1 - Finding a Geometric Power Series Centered at 0

Find a power series for $f(x)=\frac{4}{x+2}$, centered at 0 .

Solution:

Writing $f(x)$ in the form $\mathrm{a} /(1-r)$ produces

$$
\frac{4}{2+x}=\frac{2}{1-(-x / 2)}=\frac{a}{1-r}
$$

which implies that $a=2$ and $r=-x / 2$.

Example 1 - Solution

So, the power series for $f(x)$ is

$$
\begin{aligned}
\frac{4}{x+2} & =\sum_{n=0}^{\infty} a r^{n} \\
& =\sum_{n=0}^{\infty} 2\left(-\frac{x}{2}\right)^{n} \\
& =2\left(1-\frac{x}{2}+\frac{x^{2}}{4}-\frac{x^{3}}{8}+\cdots\right)
\end{aligned}
$$

This power series converges when

$$
\left|-\frac{x}{2}\right|<1
$$

which implies that the interval of convergence is $(-2,2)$.

Operations with Power Series

Operations with Power Series

Operations with Power Series
Let $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ and $g(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$.

1. $f(k x)=\sum_{n=0}^{\infty} a_{n} k^{n} x^{n}$
2. $f\left(x^{N}\right)=\sum_{n=0}^{\infty} a_{n} x^{n N}$
3. $f(x) \pm g(x)=\sum_{n=0}^{\infty}\left(a_{n} \pm b_{n}\right) x^{n}$

Example 3 - Adding Two Power Series

Find a power series for

$$
f(x)=\frac{3 x-1}{x^{2}-1}
$$

centered at 0 .

Solution:
Using partial fractions, you can write $f(x)$ as

$$
\frac{3 x-1}{x^{2}-1}=\frac{2}{x+1}+\frac{1}{x-1} .
$$

Example 3 - Solution

By adding the two geometric power series

$$
\frac{2}{x+1}=\frac{2}{1-(-x)}=\sum_{n=0}^{\infty} 2(-1)^{n} x^{n}, \quad|x|<1
$$

and

$$
\frac{1}{x-1}=\frac{-1}{1-x}=-\sum_{n=0}^{\infty} x^{n}, \quad|x|<1
$$

you obtain the following power series shown below.

$$
\frac{3 x-1}{x^{2}-1}=\sum_{n=0}^{\infty}\left[2(-1)^{n}-1\right] x^{n}=1-3 x+x^{2}-3 x^{3}+x^{4}-\cdots
$$

The interval of convergence for this power series is $(-1,1)$.

