Math 4329 FINAL REVIEW

This review is just a guide to supplement the problems assigned in the worksheets and discussed in the class.

1. Consider the linear system given below:

$$
\begin{align*}
2 x_{1}-3 x_{2} & =-7 \tag{1}\\
x_{1}+3 x_{2}-10 x_{3} & =9 \tag{2}\\
3 x_{1}+x_{3} & =13 \tag{3}
\end{align*}
$$

Interchange the rows of the system of linear equations (1)-(3) to obtain a system with a strictly diagonally dominant coefficient matrix. Then apply one step of the GaussSeidel method to approximate the solution to two significant digits. Assume an initial approximation of $x_{1}=x_{2}=x_{3}=0$.
2. How large should the degree $2 n$ be chosen in the Taylor expansion

$$
\cos (x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots+(-1)^{n} \frac{x^{2 n}}{(2 n)!}++(-1)^{n+1} \frac{x^{2 n+2}}{(2 n+2)!} \cos (c)
$$

to have

$$
\left|\cos (x)-p_{2 n}(x)\right| \leq 0.01
$$

for all $0 \leq x \leq \pi$?
Note $p_{2 n}$ denotes the Taylor polynomial of degree $2 n$ for $f(x)$ about 0 and c denotes a real number between 0 and x.
3. Use the first order Taylor polynomial with the remainder term to avoid the loss-ofsignificance errors in the following formula when x is near 0 :

$$
\frac{e^{x}-e^{-x}}{2 x}
$$

4. Let $f(x)=\frac{1}{3 x+1}, x_{0}=0, x_{1}=2, x_{2}=3$.
(a) Calculate the piecewise linear interpolation polynomial.
(b) Calculate $f\left[x_{0}, x_{1}\right], f\left[x_{0}, x_{1}, x_{2}\right]$ and the quadratic interpolation polynomial $p_{2}(x)$.
5. For the integral

$$
I=\int_{0}^{1} \sqrt{x} e^{x} d x
$$

calculate $I-T_{4}$ and $I-S_{4}$ where T_{4} and S_{4} are the Trapezoidal and Simpson quadrature rules (the Trapezoidal and Simpson quadrature formulas will be provided in the exam).
6. For the linear system $\mathbf{A x}=\mathbf{b}$, consider the following iterative scheme

$$
\begin{equation*}
\mathrm{x}_{\mathrm{n}+1}=\mathrm{b}+\mathrm{Mx}_{\mathrm{n}} \quad \mathrm{n}=\mathbf{0}, \mathbf{1}, \cdots \tag{4}
\end{equation*}
$$

where $\mathbf{M}:=\left[\begin{array}{cc}\alpha & \beta \\ -\beta & \alpha\end{array}\right]$, where α and β are constants.
Under what conditions on α and β will the iterative scheme converge for a given initial guess?
7. Determine constants $\mathrm{a}, \mathrm{b}, \mathrm{c}$ that will produce a quadrature formula

$$
\int_{-1}^{1} f(x) d x=a f(-1)+b f(1)+c f^{\prime}(0.5)
$$

that has degree of precision as high as possible.
8. Consider the Jacobi and Gauss Seidel methods applied to solve the following system:

$$
\begin{aligned}
3 x_{1}-x_{2} & =-4, \\
2 x_{1}+5 x_{2} & =2 .
\end{aligned}
$$

Compute $\mathbf{x}_{J}^{(k)}, \mathbf{x}_{G S}^{(k)}$ for $k=1,2$ with initial guess $\mathbf{x}^{(0)}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$.
Do we have convergence?
9. Check whether the following function is a spline:

$$
f(x)=\left\{\begin{array}{lr}
x^{3} & -1 \leq x \leq 0 \\
3 x^{3}-x^{2} & 0<x<1 \\
2 x & 1 \leq x \leq 2
\end{array}\right.
$$

10. (Rootfinding techniques)

(a) Consider the equation $x e^{x}=\cos (x)$. Find the interval $[a, b]$ containing the smallest positive root α. Estimate the number n of midpoints c_{n} needed to obtain an approximate root that is accurate within an error tolerance of 10^{-9}.
You may use the formula $\left|\alpha-c_{n}\right| \leq \frac{b-a}{2^{n}}$.
(b) Consider the fixed point iteration

$$
x_{n+1}=3-(2+c) x_{n}+c x_{n}^{3} .
$$

Find the values of c to ensure the convergence of the iterations generated by the above formula to α provided x_{0} is chosen sufficiently close to the actual root $\alpha=1$.
11. Gaussian Elimination
(a) Use Gaussian elimination with back substitution to solve the system:

$$
\begin{array}{r}
2 x_{1}+x_{2}+3 x_{3}=1 \\
2 x_{1}+6 x_{2}+8 x_{3}=3 \\
6 x_{1}+8 x_{2}+18 x_{3}=5
\end{array}
$$

Please specify the multipliers m_{21}, m_{31} and m_{32}.
(b) Use the multipliers from the previous part to form the LU factorization of the coefficient matrix of the linear system.
12. This question is related to floating-point numbers.
(a) Determine the number x that has the following binary format:

$$
(11111111101)_{2}
$$

(b) Furthermore, recall the double precision representation for any number y is

$$
y=\sigma \cdot\left(1 . a_{1} a_{2} a_{3} \cdots a_{52}\right) \cdot 2^{E-1023}, \text { where } E=\left(c_{1} c_{2} c_{3} \cdots c_{11}\right)_{2} .
$$

Please express the number x obtained above in its double precision representation.
13. State whether the following statements are true or false:
(a) The following function is a spline:

$$
f(x)=\left\{\begin{array}{lr}
x^{3} & -1 \leq x \leq 0 \\
3 x^{3}-x^{2} & 0<x<1 \\
2 x & 1 \leq x \leq 2
\end{array}\right.
$$

(b) If the Newton's method is used on $f(x)=3 x^{3}+2 x+1$ starting with $x_{0}=0$, the value of the next iterate $x_{1}=1 / 2$.
(c) Consider the following linear system:

$$
\begin{aligned}
x+y & =0 \\
x+\frac{801}{800} y & =1 .
\end{aligned}
$$

The solution computed using Gaussian Elimination on a computer with four digits of significance is $x=-800, y=800$.
(d) The Taylor Polynomial of degree 3 approximates $\cos (x)$ function on $(-\pi / 4, \pi / 4)$ with an error no greater than 10^{-3}.
(e) Consider the roots of the equation (in x^{-1}) of

$$
x^{-2}+b x^{-1}+1=0, \quad \text { with } \quad b>0
$$

which can be expressed as:

$$
x_{1}=\frac{2}{-b+\sqrt{b^{2}-4}}, \quad x_{2}=\frac{2}{-b-\sqrt{b^{2}-4}} .
$$

Assume that b^{2} is much larger than $4, x_{2}$ will suffer from the loss-of-significance error.
14. Consider the following table:

x	$f(x)$
0.3	7.3891
0.4	7.4633
0.5	7.5383
0.6	7.6141
0.7	7.6906

where $x_{i+1}=x_{i}+h, \quad i=0,1, \ldots, 3$. .
(a) Approximate $f^{\prime}(0.5)$ using $D_{h}^{+} f(0.5)$ and $h=0.1$.
(b) Compute $D_{h}^{(2)} f(0.5)$ using the Central Difference Formula and step size $h=0.2$. Note: You may use the following formula for Central Difference Formula:

$$
D_{h}^{(2)} f\left(x_{1}\right)=\frac{D_{h}^{+} f\left(x_{1}\right)-D_{h}^{-} f\left(x_{1}\right)}{h} .
$$

(c) Compare the answer from (b) with the following approximation:

$$
D_{h}^{(2)} f\left(x_{1}\right)=\frac{f\left(x_{2}\right)-2 f\left(x_{1}\right)+f\left(x_{0}\right)}{h^{2}}
$$

with $x_{1}=0.5, h=0.2$.
15. (a) Approximate $\int_{-1}^{1} x^{8} d x$ using the two point Gaussian quadrature rule with nodes $\pm 3^{-1 / 2}$ and weights 1 .
(b) Calculate the exact integral $\int_{-1}^{1} x^{8} d x$ and compare the error between the true value and the approximation obtained in the previous part.

