Math 4329 EXAM 02 REVIEW

1. Check whether the following function is a spline:

$$
f(x)= \begin{cases}x^{3} & 0 \leq x \leq 1 \\ 2 x-1 & 1<x<2 \\ 3 x^{2}-2 & 2 \leq x \leq 3\end{cases}
$$

Also see: problems 12-16, page 158.

2. Without computing the interpolating polynomial $p(x)$, estimate the error in interpolating the $f(x)$ where $f(x)=\sin (\pi x)$, at $0,0.5,1,-1$.
3. (Quadrature Rules)
(a) Find c_{1} and c_{2} in the following quadrature formula:

$$
\int_{-1}^{1} f(x) d x \approx c_{1} f(-1)+c_{2} f(1)
$$

so that is exact for all polynomials of the largest degree possible. What is the degree of precision for this formula?
(b) What is the error in using the 4-point trapezoidal/Simpson's rule applied to

$$
f(x)=e^{x} \cos (4 x)
$$

on the interval $(-\pi, \pi)$?
(c) Consider the task of evaluating

$$
I=\int_{0}^{2} e^{-x^{2}} d x
$$

using the trapezoidal rule $T_{n}(f)$.
How large should n be chosen in order to ensure that

$$
\left|E_{n}^{T}(f)\right| \leq 10^{-4} ?
$$

(d) i. Approximate $\int_{-1}^{1} x^{8} d x$ using the two point Gaussian quadrature rule with nodes $\pm 3^{-1 / 2}$ and weights 1 .
ii. Calculate the exact integral $\int_{-1}^{1} x^{8} d x$ and compare the error between the true value and the approximation obtained in 1(b)i.
Also see: problems 8, 9 page 230.
4. Consider the following table:

x	0.3	0.4	0.5	0.6	0.7
$f(x)$	1.5	2	5	7	12

Let $x_{i+1}=x_{i}+h, \quad i=0, \cdots, 3$.
(a) Approximate $f^{\prime}(0.5)$ using $D_{h}^{+} f(0.5)$ and $h=0.1$.
(b) Compute $D_{h}^{(2)} f(0.5)$ using the Central Difference Formula and step size $h=0.2$. Note: You may use the following formula for Central Difference Formula:

$$
D_{h}^{(2)} f\left(x_{1}\right)=\frac{D_{h}^{+} f\left(x_{1}\right)-D_{h}^{-} f\left(x_{1}\right)}{h}
$$

(c) Compare the answer from (b) with the following approximation:

$$
D_{h}^{(2)} f\left(x_{1}\right)=\frac{f\left(x_{2}\right)-2 f\left(x_{1}\right)+f\left(x_{0}\right)}{h^{2}}
$$

with $x_{1}=0.5, h=0.2$.

