Math 4329 Mock Midterm 03 Review

1. (20 pts) State whether the following statement is true or false:
(a) Consider the following linear system:

$$
\begin{aligned}
x+y & =0 \\
x+\frac{401}{400} y & =1 .
\end{aligned}
$$

The solution computed using Gaussian Elimination without pivoting and on a computer with three digits of significance is $x=-400, y=400$.
(b) Consider the following iteration method described by

$$
x^{(k+1)}=b+\left[\begin{array}{cc}
-4 c & c \\
c & 4 c
\end{array}\right] x^{(k)}, \quad k=0,1, \cdots
$$

where c is a real constant. This iterative method diverges for values of $|c| \geq 0.2$.
2. (30 pts) Gaussian Elimination
(a) Use Gaussian elimination with back substitution to solve the system:

$$
\begin{array}{r}
2 x_{1}+x_{2}+3 x_{3}=1 \\
2 x_{1}+6 x_{2}+8 x_{3}=3 \\
6 x_{1}+8 x_{2}+18 x_{3}=5
\end{array}
$$

Please specify the multipliers m_{21}, m_{31} and m_{32}.
(b) Use the multipliers from the previous part (a) to form the LU factorization of the coefficient matrix of the linear system.
3. (10 pts) Consider the linear system:

$$
\begin{aligned}
& 39 x_{1}+40 x_{2}=b_{1} \\
& 40 x_{1}+41 x_{2}=b_{2}
\end{aligned}
$$

Calculate the condition number of the coefficient matrix. Is the system well-conditioned with respect to perturbations of the right hand side constants $\left\{b_{1}, b_{2}\right\}$?
4. (20 pts) Consider the Jacobi and Gauss Seidel methods applied to solve the following system:

$$
\begin{aligned}
3 x_{1}-x_{2} & =-4, \\
2 x_{1}+5 x_{2} & =2 .
\end{aligned}
$$

Compute $\mathbf{x}_{J}^{(k)}, \mathbf{x}_{G S}^{(k)}$ for $k=1,2$ with initial guess $\mathbf{x}^{(0)}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$.
Do we have convergence for both the iterative methods?
5. (20 pts) This problem is a multiple choice problem do either Option I or Option II.

Option I: Consider the task of solving following linear system:

$$
\begin{aligned}
0.729 x_{1}+0.81 x_{2}+0.9 x_{3} & =0.6867 \\
x_{1}+x_{2}+x_{3} & =0.8338 \\
1.331 x_{1}+1.21 x_{2}+1.1 x_{3} & =1
\end{aligned}
$$

on a computer using four-digit decimal machine with rounding. The true solution of this system is

$$
x_{1}=0.2245 \quad x_{2}=0.2814 \quad x_{3}=0.3279
$$

correctly rounded to four digits.
If we apply Gaussian elimination (without pivoting) using four-digit decimal machine with rounding, we obtain the following computed solution

$$
\hat{x}_{1}=0.2251, \quad \hat{x}_{2}=0.2790 \quad \hat{x}_{3}=0.3295 .
$$

Show that by applying one step of the residual correction method this solution can be corrected with the correction term \hat{e} approximately given by

$$
\hat{e}=[-0.0004471,0.00215,-0.001504]
$$

using eight-digit floating point decimal arithmetic and rounding.
Option II: Consider the problem of quadratic polynomial interpolation:

$$
p(2)=4, \quad p(-1)=1, \quad p(1)=0
$$

where $p(x)$ is a polynomial of degree at most 2 .
(a) Transform the above polynomial interpolation problem to another problem of finding the solution of a system of linear equations which can be expressed in the form

$$
A x=b .
$$

Clearly write down the matrix A and the vectors b and x.
(b) Show that the solution to the linear system obtained in part (a) can be obtained by solving two smaller linear systems:

$$
L y=b, \quad U x=y
$$

where L and U are lower and upper triangular matrices respectively such that $A=L U$. Please explicitly write down the matrices L, U and the vector y.

For Option I, you may use the following residual correction method algorithm:
Input: $x^{0}=\hat{x}$ obtained from using Gauss Elimination to solve $A x=b$.
Tolerance $\varepsilon>0$
Let $r^{0}=b-A x^{0}$
Solve for e^{0} satisfying $A e^{0}=r^{0}$. while $\left|e^{n}\right|>\varepsilon$ do
$x^{n+1}=x^{n}+e^{n}$
Let $r^{n+1}=b-A x^{n+1}$.
Solve for e^{n+1} satisfying $A e^{n+1}=r^{n+1}$.
end
Algorithm 1: Residual Correction Method

