1. This question is on the Taylor polynomial.
(a) Find the Taylor Polynomial $\mathrm{p}_{1}(\mathrm{x})$ for $\mathrm{f}(\mathrm{x})=\log \left(1+e^{-x}\right)$ about the point $a=0$.
(b) Bound the error $\left|f(x)-p_{1}(x)\right|$ using the Taylor Remainder $R_{1}(x)$ on $[-1,1]$ for the choice of $f(x)$ as described above.
2. Let $p_{n}(x)$ be the Taylor Polynomial of degree n of $f(x)=\log (x+3)$ about $a=0$. How large should n be so that $\left|f(x)-p_{n}(x)\right|<10^{-3}$ for $-1 \leq x \leq 0.5$?
3. (10 pts) This question is related to floating-point numbers.
(a) Determine the number x that has the following binary format:
$(11111001101)_{2}$
(b) Furthermore, recall the double precision representation for any number y is

$$
y=\sigma \cdot\left(1 . a_{1} a_{2} a_{3} \cdots a_{52}\right) \cdot 2^{E-1023}, \text { where } E=\left(c_{1} c_{2} c_{3} \cdots c_{11}\right)_{2} .
$$

Please express the number x obtained above in its double precision representation.
4. This question is concerned with the loss-of-significance errors.
(a) Explain the difficulty in the evaluation of $f(x)=x(\sqrt{x}-\sqrt{x-1})$ for increasing values of $x=10^{2}+1,10^{4}+1,10^{6}+1,10^{8}+1,10^{10}+1$.
(b) Reformulate $f(x)$ to avoid the above difficulty in (a). Simplify the expression as much as possible.
5. Use the Taylor Polynomial of degrees 1,2 and 3 for $f(x)=x+1^{1 / 3}$ to compute the value of $2^{1 / 3}$ about 0 .
6. Calculate the error, the relative error and the number of significant digits in the approximation $x_{A}=22 / 7$ to $x_{T}=3.141593$.

