Name: \qquad

1. Consider the fixed point iteration

$$
\begin{equation*}
x_{n+1}=5-(4+c) x_{n}+c x_{n}^{5} . \tag{1}
\end{equation*}
$$

For some values of c, the iterations generated by the above formula converges to $\alpha=1$ provided x_{0} is chosen sufficiently close to α.
(a) Identify the function $g(x)$ which characterizes the above fixed point iteration (1). [That is, the function $g(x)$ satisfying $x_{n+1}=g\left(x_{n}\right)$.]
(b) Find the values of c to ensure the convergence of the iterations generated by the above formula provided x_{0} is chosen sufficiently close to α.
(c) For what values of c is this convergence quadratic?
2. Consider the data $\{(-1,-12),(2,6),(3,20)\}$.

Use Lagrange's formula to find the quadratic polynomial $p_{2}(x)$ that interpolates the above data. Find the expression in the simplest form.
You may use the formula: $(x-a)(x-b)=x^{2}-(a+b) x+a b$.

