Section 7.4

Arc Length: Let $y=f(x)$ represent a smooth curve on the interval $[a, b]$. The arc length of f between a and b is

$$
s=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

Similarly, for a smooth curve given by $x=g(y)$, the arc length of g between c and d is

$$
s=\int_{c}^{d} \sqrt{1+\left[g^{\prime}(y)\right]^{2}} d y
$$

Surface of Revolution: If the graph of a continuous function is revolved about a line, the resulting surface is a surface of revolution.

Area of a Surface of Revolution: Let $y=f(x)$ have a continuous derivative on the interval $[a, b]$. The area S of the surface of revolution formed by revolving the graph of f about a horizontal or vertical axis is

$$
S=2 \pi \int_{a}^{b} r(x) \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

where $r(x)$ is the distance between the graph of f and the axis of revolution. If $x=g(y)$ on the interval $[c, d]$, then the surface area is

$$
S=2 \pi \int_{c}^{d} r(y) \sqrt{1+\left[f^{\prime}(y)\right]^{2}} d y
$$

where $r(y)$ is the distance between the graph of g and the axis of revolution.

1) Find the arc length of the graph of $f(x)=\ln (\sec x)$ on the interval $\left[0, \frac{\pi}{4}\right]$.
2) Find the arc length of the graph of $x=\frac{2}{3}(y-1)^{3 / 2}$ on the interval [1, 4].
3) Find the area of the surface formed by revolving the graph of $f(x)=\sqrt{x}$ on the interval $[0,1]$ about the x-axis.
4) Find the area of the surface formed by revolving the graph of $f(x)=9-x^{2}$ on the interval $[0,3]$ about the y-axis.
