Section 7.6

Mass and Force: Mass and force are related by the equation $F=m a$

Moments and Center of Mass: One Dimensional System: Let the point masses $m_{1}, m_{2}, \ldots, m_{n}$ be located at $x_{1}, x_{2}, \ldots, x_{n}$.

1. The moment about the origin is $M_{0}=m_{1} x_{1}+m_{2} x_{2}+\cdots+m_{n} x_{n}$.
2. The center of mass is $\dot{x}=\frac{M_{0}}{m}$, where $m=m_{1}+m_{2}+\cdots+m_{n}$ is the total mass of the system.

Moment and Center of Mass: Two Dimensional System: Let the point masses $m_{1}, m_{2}, \ldots, m_{n}$ be located at $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$.

1. The moment of mass about the y-axis is $M_{y}=m_{1} x_{1}+m_{2} x_{2}+\cdots+m_{n} x_{n}$.
2. The moment of mass about the x-axis is $M_{x}=m_{1} y_{1}+m_{2} y_{2}+\cdots+m_{n} y_{n}$.
3. The center of mass (\dot{x}, \dot{y}) (or center of gravity) is

$$
\dot{x}=\frac{M_{y}}{m} \text { and } \dot{y}=\frac{M_{x}}{m}
$$

where $m=m_{1}+m_{2}+\cdots+m_{n}$ is the total mass of the system.

Moments and Center of Mass of a Planar Lamina: Let f and g be continuous functions such that $f(x) \geq g(x)$ on $[a, b]$, and consider the planar Iamina of uniform density ρ bounded by the graphs of $y=f(x), y=g(x)$, and $a \leq x \leq b$.

1. The moments about the ${ }^{x}$ - and y-axes are

$$
M_{x}=\rho \int_{a}^{b}\left[\frac{f(x)+g(x)}{2}\right][f(x)-g(x)] d x \quad M_{y}=\rho \int_{a}^{b} x[f(x)-g(x)] d x
$$

2. The center of mass (\dot{x}, \dot{y}) is given by $\dot{x}=\frac{M_{y}}{m} \quad$ and $\quad \dot{y}=\frac{M_{x}}{m}$, where $m=\rho \int_{a}^{b}[f(x)-g(x)] d x \quad$ is the mass of the lamina.

Centroid of a Region in the Plane: The center of mass of a lamina with uniform density depends only on the shape of the lamina and not the density. The point
(\dot{x}, \dot{y}) is sometimes called the centroid of the region. It is found by assuming that $\rho=1$, and is given by

$$
\dot{x}=\frac{1}{A} \int_{a}^{b} x[f(x)-g(x)] d x \wedge \dot{y}=\frac{1}{A} \int_{a}^{b}\left[\frac{f(x)+g(x)}{2}\right][f(x)-g(x)] d x
$$

1) What is the mass (in kilograms) of an object that feels a force of 1000 newtons at sea level?
2) A point of mass 7 grams is located 4 cm to the left of the origin and a point of mass of 4 gm is located 8 cm to the right of the origin. The masses are connected by a thin, light rod. Find the center of mass of the system.
3) Find the center of mass of a system of point masses $m_{1}=3, m_{2}=5$, and

$$
m_{3}=1, \quad \text { located at }(4,-1),(1,3), \text { and }(-2,2) \text {, respectively. }
$$

4) Find the center of mass of the lamina of uniform density ρ bounded by $f(x)=9-x^{2} \quad$ and the $\quad x$-axis.
5) Find the centroid of the region bounded by the graphs of $f(x)=9-x^{2}$ and $g(x)=6-2 x$

Homework for 7.6: \#7, 9, 14, 19, 24

