Section 9.9

Operations with Power Series: Let $f(x)=\sum a_{n} x^{n}$ and $g(x)=\sum b_{n} x^{n}$.

1. $f(k x)=\sum_{n=0}^{\infty} a_{n} k^{n} x^{n}$
2. $f\left(x^{N}\right)=\sum_{n=0}^{\infty} a_{n} x^{n N}$
3. $f(x) \pm g(x)=\sum_{n=0}^{\infty}\left(a_{n} \pm b_{n}\right) x^{n}$
1) Find a geometric power series for the function, centered at 0 a) by using the properties of a geometric series, and b) by using long division.

$$
f(x)=\frac{2}{5-x}
$$

2) Find a power series for the function, centered at c, and determine the interval of convergence.
a) $f(x)=\frac{3}{2 x-1}, c=2$
b) $g(x)=\frac{3 x-8}{3 x^{2}+5 x-2}, \quad c=0$
3) Use the power series

$$
\frac{1}{1+x}=\sum_{n=0}^{\infty}(-1)^{n} x^{n}
$$

to determine a power series, centered at 0 , for the function. Identify the interval of convergence.
a) $f(x)=\frac{2}{(x+1)^{3}}=\frac{d^{2}}{d x^{2}}\left[\frac{1}{x+1}\right]$
b) $f(x)=\arctan 2 x$

