Math 4329: Numerical Analysis Chapter 03: Newton's Method

Natasha S. Sharma, PhD

Mathematical question we are interested in numerically answering

Math 4329:
Numerical
Analysis
Chapter 03:
Newton's
Method

■ How to find the x-intercepts of a function $f(x)$? These x-intercepts are called the roots of the equation $f(x)=0$. Notation: denote the exact root by α. That means, $f(\alpha)=0$.

Basic Idea Behind Newton's Method

Math 4329:
Numerical Analysis Chapter 03: Newton's Method

Given x_{0}, x_{1} is the x-intercept of the tangent line at $\left(x_{0}, f\left(x_{0}\right)\right)$.

Figure: Linearization of $f(x)$ about x_{0}, x_{1} and x_{2} respectively.

Newton's Method

Math 4329:
Numerical
Analysis
Chapter 03:
Newton's
Method

Tangent Line at $\left(x_{0}, f\left(x_{0}\right)\right)$:

$$
y(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)
$$

We obtain the next iterate x_{1} as the x-intercept of the tangent line that is

$$
f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x_{1}-x_{0}\right)=0
$$

This simplifies to

$$
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} .
$$

Generalizing, we can generate a sequence $\left\{x_{n}\right\}_{n \geq 1}$ where

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}, \quad n=0,1,2, \cdots
$$

Newton's Method

Math 4329:
Numerical
Analysis
Chapter 03:
Newton's
Method
Natasha S.
Sharma, PhD

Let x_{0} be an initial guess. Let $\varepsilon>0$ denote the given error tolerance and max_iteration denote the permissible number of iterations.
If $\left|f\left(x_{0}\right)\right| \leq \varepsilon$, then accept x_{0} as the root and stop.
Otherwise, define $x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}$ and,
For $k=1,2,3 \cdots$, max_iteration do
N1 If $\left|f\left(x_{k}\right)\right| \leq \varepsilon$ and $\left|x_{k}-x_{k-1}\right|<\varepsilon$ then accept x_{k} as the root and stop.
N2 Define $x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}$.
N3 Return to N1.
See the code Newton.m.

Example

Math 4329:
Numerical Analysis Chapter 03: Newton's Method

Find the largest root of

$$
f(x)=x^{6}-x-1=0
$$

accurate within $\varepsilon=1 e-8$ using Newton's Method.

Solution

Math 4329:
Numerical Analysis Chapter 03: Newton's Method

Note $\alpha \approx 1.134724138$.
Solution: The sequence of iterates $\left\{x_{n}\right\}_{n \geq 1}$ is generated according to the formula: for all $n=0,1,2, \cdots$

$$
\begin{aligned}
x_{n+1} & =x_{n}-\left(\frac{x_{n}^{6}-x_{n}-1}{6 x_{n}^{5}-1}\right), \\
& =x_{n}\left(\frac{6 x_{n}^{5}-1}{6 x_{n}^{5}-1}\right)-\left(\frac{x_{n}^{6}-x_{n}-1}{6 x_{n}^{5}-1}\right) \\
& =\frac{6 x_{n}^{6}-x_{n}-\left(x_{n}^{6}-x_{n}-1\right)}{6 x_{n}^{5}-1} \\
& =\frac{5 x_{n}^{6}+1}{6 x_{n}^{5}-1} .
\end{aligned}
$$

Performance of the Newton's Method

Math 4329:
Numerical
Analysis
Chapter 03:
Newton's
Method
Natasha S. Sharma, PhD

n	x_{n}	$f\left(x_{n}\right)$	$x_{n}-x_{n-1}$	$\alpha-x_{n-1}$
0	1.50	$8.89 \mathrm{e}+1$	-	-
1	1.30049088	$2.5 \mathrm{e}+1$	$-2 \mathrm{e}-1$	$-3.65 \mathrm{e}-1$
2	1.18148042	$5.38 \mathrm{e}-1$	$-1.19 \mathrm{e}-1$	$-1.66 \mathrm{e}-1$
3	1.13945559	$4.92 \mathrm{e}-2$	$-4.2 \mathrm{e}-2$	$-4.68 \mathrm{e}-3$
4	1.13477763	$5.5 \mathrm{e}-4$	$-4.68 \mathrm{e}-3$	$-4.73 \mathrm{e}-3$
5	1.13472415	$7.11 \mathrm{e}-8$	$-5.35 \mathrm{e}-5$	$-5.35 \mathrm{e}-5$
6	1.13472414	$1.55 \mathrm{e}-15$	$-6.91 \mathrm{e}-9$	$-6.91 \mathrm{e}-9$
\vdots	\vdots	\vdots	\vdots	\vdots
α	1.134724138			

Remarks
1 May converge slowly at first. However, as the iterates come closer to the root, the speed of convergence increases.

Another Example

Math 4329:
Numerical
Analysis
Chapter 03:
Newton's
Method

Using Newton's Method solve the following equation

$$
f(x) \equiv x^{3}-3 x^{2}+3 x-1=0
$$

with an accuracy of $\varepsilon=10^{-6}$.
Simplified form of Newton's Method:

$$
x_{n+1}=\frac{2 x_{n}^{3}-x_{n}^{2}+1}{3\left(x_{n}-1\right)^{2}}
$$

with initial guess $x_{0}=0.5$.

Application I: Computing a ${ }^{1 / m}$

Math 4329:
Numerical
Analysis
Chapter 03:
Newton's
Method

Compute $\sqrt{2}$ using only Newton's Method and '+,-,, ,/'.

Solution: Find x such that $x^{2}=2$.
Equivalently, find x satisfying

$$
f(x):=x^{2}-2=0
$$

Newton's Method: Start with initial guess $x_{0}=1$, compute x_{1} using

$$
\begin{gathered}
x_{1}=x_{0}-\frac{\left(x_{0}^{2}-2\right)}{2 x_{0}}=1.5 \\
x_{2}=1.4166, x_{3}=1.4142, x_{4}=1.4142 .
\end{gathered}
$$

Application II: Division Operation

Math 4329:
Numerical
Analysis
Chapter 03:
Newton's
Method

Replace the division operation in early computers. These early computers only allowed addition, subtraction and multiplication.

Compute $\frac{1}{b}$ using Newton's Method and the operations,,$+- *$.

Solution: Find x such that $x=\frac{1}{b}$. Equivalently, find x satisfying

$$
f(x):=b-x^{-1}=0
$$

Newton's Method: Start with initial guess x_{0}, compute x_{1} using

$$
x_{1}=x_{0}\left(2-b x_{0}\right) .
$$

Application III: Root finding in any dimension

Math 4329
Numerical
Analysis
Chapter 03:
Newton's
Method
Natasha S. Sharma, PhD

Example: Finding the intersection of a hyperbola and a circle.

Intersection of a circle and a hyperbola

Error Analysis

Math 4329:
Numerical
Analysis
Chapter 03:
Newton's
Method
Natasha S. Sharma, PhD

Assume that $f(x)$ has atleast continuous derivatives of order 2 for all x in some interval containing α and $f^{\prime \prime}(\alpha) \neq 0$.

$$
\alpha-x_{n+1}=\left(\alpha-x_{n}\right)^{2}\left[\frac{-f^{\prime \prime}\left(c_{n}\right)}{2 f^{\prime}\left(x_{n}\right)}\right]
$$

Error in x_{n+1} is nearly proportional to the square of the error in x_{n}.
The term $\frac{-f^{\prime \prime}\left(c_{n}\right)}{2 f^{\prime}\left(x_{n}\right)}$ is the amplification factor. However, it depends on n. We need to make this factor independent of n. This can be achieved in the following manner:

$$
\begin{gathered}
\frac{-f^{\prime \prime}\left(c_{n}\right)}{2 f^{\prime}\left(x_{n}\right)} \approx \frac{-f^{\prime \prime}(\alpha)}{2 f^{\prime}(\alpha)}=M . \\
M=\max _{x \in[a, b]} \frac{-f^{\prime \prime}(x)}{2 f^{\prime}(x)} .
\end{gathered}
$$

Error Analysis

Math 4329:
Numerical
Analysis
Chapter 03:
Newton's
Method

Initial guess is crucial here and determine the number of iterations needed to achieve the desired accuracy! For our worked out example,

$$
\begin{aligned}
& \frac{-f^{\prime \prime}\left(c_{n}\right)}{2 f^{\prime}\left(x_{n}\right)} \approx \frac{-f^{\prime \prime}(\alpha)}{2 f^{\prime}(\alpha)} \approx-2.42 \\
& \alpha-x_{n+1} \approx-2.42\left(\alpha-x_{n}\right)^{2}
\end{aligned}
$$

Determining x_{0} without using Bisection Method

Math 4329:
Numerical
Analysis
Chapter 03:
Newton's
Method
Natasha S. Sharma, PhD

$$
\begin{aligned}
\alpha-x_{n+1} & =\left(\alpha-x_{n}\right)^{2}\left[\frac{-f^{\prime \prime}\left(c_{n}\right)}{2 f^{\prime}\left(x_{n}\right)}\right] \\
& \approx\left(\alpha-x_{n}\right)^{2} \underbrace{\left[\frac{-f^{\prime \prime}(\alpha)}{2 f^{\prime}(\alpha)}\right]}_{M}
\end{aligned}
$$

Multiplying both sides with M

$$
M\left(\alpha-x_{n+1}\right) \approx M^{2}\left(\alpha-x_{n}\right)^{2}
$$

$$
\begin{aligned}
M\left(\alpha-x_{2}\right) \approx M^{2}\left(\alpha-x_{1}\right)^{2} & \approx M^{2}\left(M^{2}\left(\alpha-x_{0}\right)^{4}\right) \\
& =\left(M\left(\alpha-x_{0}\right)\right)^{2^{2}}
\end{aligned}
$$

Math 4329:
Numerical Analysis
Chapter 03: Newton's Method

$$
\left|M\left(\alpha-x_{0}\right)\right|<1 \Longrightarrow\left|\alpha-x_{0}\right|<\frac{1}{|M|}
$$

By picking x_{0}

$$
\begin{gathered}
-1<\frac{1 / b-x_{0}}{1 / b}<1 \\
-1<\frac{1-b x_{0}}{1}<1 \\
0<b x_{0}<2
\end{gathered}
$$

Order of Convergence

Math 4329:
Numerical
Analysis
Chapter 03:
Newton's
Method
Natasha S.
Sharma, PhD

A sequence $\left\{x_{n}\right\}_{n \geq 0}$ converges to α with order $p \geq 1$

$$
\text { if }\left|\alpha-x_{n+1}\right| \leq c\left|\alpha-x_{n}\right|^{p}, n \geq 0
$$

for some $c \geq 0$
$p=1$ and $c<1$ linear convergence (Bisection Method),
$p=2$ quadratic convergence (Newton's Method),
$p=3$ cubic convergence (some fixed point iterative methods).

