Numerical
Analysis: Gaussian Numerical Integration

Numerical Analysis: Gaussian Numerical Integration

Natasha S. Sharma, PhD

Notation

Numerical
Analysis:
Gaussian
Numerical
Integration
Natasha S. Sharma, PhD

Traditionally, quadrature refers to area.
Numerical Integration rule is also called numerical quadrature rule.

General form of the integration rule

Numerical
Analysis:
Gaussian
Numerical
Integration
Natasha S. Sharma, PhD

Towards designing a general integration rule, we first extract the general form of this rule:

$$
I_{n}(f)=\sum_{j=1}^{n} \omega_{j} f\left(x_{j}\right)
$$

where
■ w_{j} denote the weights of the integration rule,
■ x_{i} denote the nodes of the integration rule.
Let us see how this fits with the two integration rules we have learnt.

General form of the integration rule

Numerical
Analysis:
Gaussian
Numerical
Integration
Natasha S. Sharma, PhD

The trapezoidal rule:

$$
\int_{a}^{b} f(x) d x \approx \frac{b-a}{2}[f(a)+f(b)] \equiv T_{1}(f) .
$$

Weights: $\quad w_{1}=w_{2}=\frac{b-a}{2}$,
Nodes: $\quad x_{1}=a, x_{2}=b$.

$$
T_{1}(f)=w_{1} f\left(x_{1}\right)+w_{2} f\left(x_{2}\right)
$$

General form of the integration rule

Numerical
Analysis:
Gaussian
Numerical
Integration
Natasha S. Sharma, PhD

The Simpson's rule:

$$
\int_{a}^{b} f(x) d x \approx \frac{h}{3}\left[f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right] \equiv S_{2}(f)
$$

Weights: $\quad w_{1}=h / 3 \quad w_{2}=4 h / 3, \quad w_{3}=h / 3$
Nodes: $\quad x_{1}=a, \quad x_{2}=\frac{a+b}{2}, \quad x_{3}=b$.

$$
S_{2}(f)=w_{1} f\left(x_{1}\right)+w_{2} f\left(x_{2}\right)+w_{3} f\left(x_{3}\right)
$$

Designing a Numerical Integration Rule

Numerical
Analysis:
Gaussian
Numerical
Integration
Natasha S. Sharma, PhD

Definition (Exactness of an integration formula)

Consider an integration formula

$$
I_{1}(f)=w_{1} f\left(x_{1}\right)+w_{2} f\left(x_{2}\right) .
$$

This formula is said to be exact wrt $f(x)$ if

$$
I(f)=I_{1}(f)
$$

Designing a Numerical Integration Rule

Numerical
Analysis:
Gaussian
Numerical
Integration
Natasha S. Sharma, PhD

Example

Consider approximating $I(f)=\int_{0}^{1} f(x) d x$ by the Trapezoidal integration rule

$$
T_{1}(f) \equiv \frac{1}{2}[f(0)+f(1)]
$$

for any choice of $f(x)$.
We check which polynomial functions of the form $f(x)=1, x, x^{2}, \cdots x^{p}, p>0$ is this integration rule exact.

$$
f(x)=1, I(f)=\int_{0}^{1} f(x) d x=1 \quad T_{1}(f)=\frac{1}{2}[f(0)+f(1)]=1
$$

So, the integration rule is exact for $f(x)=1$.

Designing a Numerical Integration Rule

Numerical
Analysis:
Gaussian
Numerical
Integration
Natasha S
Sharma, PhD
$f(x)=x, I(f)=\int_{0}^{1} f(x) d x=\frac{1}{2} \quad T_{1}(f)=\frac{1}{2}[f(0)+f(1)]=\frac{1}{2}$
So, the integration rule is exact for $f(x)=x$.

$$
f(x)=x^{2}, I(f)=\int_{0}^{1} f(x) d x=\frac{1}{3} \quad T_{1}(f)=\frac{1}{2} .
$$

So the integration rule is not exact for $f(x)=x^{2}$.
$T_{1}(f)$ is exact for polynomials of degree upto 1.

Designing a Numerical Integration Rule

Numerical
Analysis:
Gaussian
Numerical
Integration
Natasha S.
Sharma, PhD

To characterize the accuracy we demand from the integration rule, we introduce the notion of degree of precision.

Definition (Degree of Precision (DoP))

The degree of accuracy or precision of a quadrature/integration formula is the largest positive integer N such that the formula is exact for $1, x, x^{2}, \cdots x^{N}$.

Example

The trapezoidal rule has DoP 1.

Proof.

Refer to the previous example.

Remark

Numerical
Analysis:
Gaussian
Numerical
Integration
Natasha S. Sharma, PhD

The DoP of a quadrature formula is N if and only if the error is zero for all polynomials of degree $k=0, \cdots N$, but is NOT zero for some polynomial of degree $N+1$.

Numerical Integration: A General Framework

Numerical
Analysis:
Gaussian
Numerical
Integration
Natasha S. Sharma, PhD

Example

The Simpson's rule has DoP 3.
We observe that for

$$
f(x)=1, x, x^{2}, x^{3} I(f)=S_{2}(f) .
$$

However, $f(x)=x^{4}, I(f)=\int_{0}^{1} f(x) d x=\frac{1}{5}=0.2$,
while, $\quad S_{2}(f)=\frac{h}{3}[f(0)+4 f(0.5)+f(1)], h=1 / 2$
$=\frac{1}{6} \times 0+\frac{4}{6} \times 0.5^{3}+\frac{1}{6} \times 1=0.25$.

$$
\begin{aligned}
& I(f)=S_{2}(f) \text { for } f(x)=1, x, x^{2}, x^{3} ; \\
& I(f) \neq S_{2}(f) \text { for } f(x)=x^{4} .
\end{aligned}
$$

Table for Gaussian Quadrature

Numerical
Analysis:
Gaussian
Numerical
Integration
Natasha S. Sharma, PhD

For another quadrature rule $I_{n}(f)$ to approximate $\int_{-1}^{1} f(x) d x$ of the form

$$
I_{n}(f)=\sum_{i=1}^{n} w_{i} f\left(x_{i}\right)
$$

we follow the weights and nodes given by the table:

n	x_{i}	w_{i}	n	x_{i}	w_{i}
2	± 0.57735	1	4	± 0.8611	0.3478
				± 0.33998	0.6521
3	± 0.77459	0.555	5	± 0.9061	0.2369
	0	0.8888		± 0.5384	0.4786
				0.0	0.5688

Table: n-point Gaussian Quadrature rule

Example

Numerical
Analysis:
Gaussian
Numerical
Integration
Natasha S.
Sharma, PhD

Example

Apply the 2 and 3 points Gaussian numerical integration formula to obtain an approximation $I_{n}(f)$ for $I=\int_{-1}^{1} e^{x} d x$. Use the nodes and weights provided in Table.

Proof.

$$
\begin{aligned}
I_{2}(f)= & 1 \times e^{(-0.57735)}+1 \times e^{(0.57735)} . \\
I_{3}(f)= & 0.555 \times e^{(-0.33998)}+0.8888 \times e^{(0)}+ \\
& 0.555 \times e^{(0.33998)} .
\end{aligned}
$$

Another example

Numerical
Analysis:
Gaussian
Numerical
Integration
Natasha S.
Sharma, PhD

Example

Apply the 2 and 3 points Gaussian numerical integration formula to obtain an approximation $I_{n}(f)$ for $I=\int_{-1}^{1} e^{-x^{2}} d x$. Use the nodes and weights provided in Table.

Proof.

$$
\begin{aligned}
I_{2}(f)= & 1 \times e^{-(-0.57735)^{2}}+1 \times e^{-(0.57735)^{2}} . \\
I_{3}(f)= & 0.555 \times e^{-(-0.33998)^{2}}+0.8888 \times e^{-(0)^{2}}+ \\
& 0.555 \times e^{-(0.33998)^{2}} .
\end{aligned}
$$

Another example

Numerical
Analysis:
Gaussian
Numerical
Integration
Natasha S.
Sharma, PhD

Example

Apply the 2 and 3 points Gaussian numerical integration formula to obtain an approximation $I_{n}(f)$ for $I=\int_{-1}^{1} e^{-x^{2}} d x$. Use the nodes and weights provided in Table.

Proof.

$$
\begin{aligned}
I_{2}(f)= & 1 \times e^{-(-0.57735)^{2}}+1 \times e^{-(0.57735)^{2}} . \\
I_{3}(f)= & 0.555 \times e^{-(-0.33998)^{2}}+0.8888 \times e^{-(0)^{2}}+ \\
& 0.555 \times e^{-(0.33998)^{2}} .
\end{aligned}
$$

Designing Quadrature Rules

Numerical
Analysis:
Gaussian
Numerical
Integration
Natasha S. Sharma, PhD

Example

Find c_{1}, and c_{2} in the following quadrature formula:

$$
\int_{1}^{2} f(x) d x \approx c_{1} f(1)+c_{2} f(2)=\tilde{I}(f)
$$

so that is exact for all polynomials of the largest degree possible. What is the degree of precision for this formula?

Designing Quadrature Rules

Numerical
Analysis:
Gaussian
Numerical
Integration
Natasha S. Sharma, PhD

Proof.

$f(x)=1, \Longrightarrow \tilde{I}(f)=c_{1}+c_{2}, I(f)=\int_{1}^{2} 1 d x=1$.
$f(x)=x, \Longrightarrow \tilde{I}(f)=c_{1}+2 c_{2}, I(f)=\int_{1}^{2} x d x=3 / 2$.
For the integration rule to be exact for $f(x)=1, c_{1}+c_{2}=1$. Similarly, $c_{1}+2 c_{2}=3 / 2$.
This means that $c_{1}=c_{2}=1 / 2$.
DoP:
For $f(x)=x^{2}, \Longrightarrow \tilde{I}(f)=c_{1}+4 c_{2}=1 / 2+4 / 2=5 / 2$,
while $I(f)=\int_{1}^{2} x^{2} d x=7 / 3$
Hence, $\tilde{I}(f) \neq I(f)$ for $f(x)=x^{2}$. Therefore DoP is 1 .

