Math 4329: Numerical Analysis Lecture 01

Natasha S. Sharma, PhD

What is Numerical Analysis?

Math 4329:
Numerical
Analysis
Lecture 01
■ In the simplest sense, a computational extension of Calculus.

What is Numerical Analysis?

Math 4329:
Numerical Analysis Lecture 01

Natasha S. Sharma, PhD

■ In the simplest sense, a computational extension of Calculus.

■ Most of the Calculus problems will be analyzed from a computational point of view. This means we will study methods and algorithms to approximate the solution to these problems.

What is Numerical Analysis?

Math 4329
Numerical
Analysis
Lecture 01
Natasha S.
Sharma, PhD

■ In the simplest sense, a computational extension of Calculus.

- Most of the Calculus problems will be analyzed from a computational point of view. This means we will study methods and algorithms to approximate the solution to these problems.
■ To name a few problems.

What is Numerical Analysis?

Math 4329:
Numerical
Analysis
Lecture 01
Natasha S.
Sharma, PhD

■ In the simplest sense, a computational extension of Calculus.

- Most of the Calculus problems will be analyzed from a computational point of view. This means we will study methods and algorithms to approximate the solution to these problems.
- To name a few problems...

UT
 What is Numerical Analysis?

Math 4329
Numerical
Analysis
Lecture 01
Natasha S.
Sharma, PhD

- In the simplest sense, a computational extension of Calculus.
- Most of the Calculus problems will be analyzed from a computational point of view. This means we will study methods and algorithms to approximate the solution to these problems.
- To name a few problems...

1 Evaluation of "complicated" functions at a point using "simpler" functions,
2 Numerical Differentiation and Integration

What is Numerical Analysis?

Math 4329:
Numerical
Analysis
Lecture 01
Natasha S.
Sharma, PhD

■ In the simplest sense, a computational extension of Calculus.

- Most of the Calculus problems will be analyzed from a computational point of view. This means we will study methods and algorithms to approximate the solution to these problems.
- To name a few problems...

1 Evaluation of "complicated" functions at a point using "simpler" functions,
2 Numerical Differentiation and Integration
3 Finding the x-intercepts of a function.

What is Numerical Analysis?

■ In the simplest sense, a computational extension of Calculus.

- Most of the Calculus problems will be analyzed from a computational point of view. This means we will study methods and algorithms to approximate the solution to these problems.
- To name a few problems...

1 Evaluation of "complicated" functions at a point using "simpler" functions,
2 Numerical Differentiation and Integration
3 Finding the x-intercepts of a function.
■ Practical Implications:

What is Numerical Analysis?

■ In the simplest sense, a computational extension of Calculus.

- Most of the Calculus problems will be analyzed from a computational point of view. This means we will study methods and algorithms to approximate the solution to these problems.
- To name a few problems...

1 Evaluation of "complicated" functions at a point using "simpler" functions,
2 Numerical Differentiation and Integration
3 Finding the x-intercepts of a function.
■ Practical Implications:
1 Evaulate the quality of the algorithm in terms of efficiency and accuracy.

What is Numerical Analysis?

- In the simplest sense, a computational extension of Calculus.
- Most of the Calculus problems will be analyzed from a computational point of view. This means we will study methods and algorithms to approximate the solution to these problems.
- To name a few problems...

1 Evaluation of "complicated" functions at a point using "simpler" functions,
2 Numerical Differentiation and Integration
3 Finding the x-intercepts of a function.
■ Practical Implications:
1 Evaulate the quality of the algorithm in terms of efficiency and accuracy.
2 Use MATLAB software to solve these problems.

What is Numerical Analysis?

■ In the simplest sense, a computational extension of Calculus.

- Most of the Calculus problems will be analyzed from a computational point of view. This means we will study methods and algorithms to approximate the solution to these problems.
- To name a few problems...

1 Evaluation of "complicated" functions at a point using "simpler" functions,
2 Numerical Differentiation and Integration
3 Finding the x-intercepts of a function.
■ Practical Implications:
1 Evaulate the quality of the algorithm in terms of efficiency and accuracy.
2 Use MATLAB software to solve these problems.

Evaluation of "complicated" functions at a point using "simpler" functions

Math 4329:
Numerical
Analysis
Lecture 01
Natasha S. Sharma, PhD

Problem: What is the value of $e^{0}, e^{-1}, e^{-0.5}$?

Solution:
■ Use the simpler function Taylor Polynomial to find these values. This has to be based on a evaluation at a known point for example at 0 since we know $e^{0}=1$.

- Error in Taylor Polynomial
- Practice Problems for you

Evaluation of "complicated" functions at a point using "simpler" functions

Math 4329:
Numerical
Analysis
Lecture 01
Natasha S. Sharma, PhD

Problem: What is the value of $e^{0}, e^{-1}, e^{-0.5}$?

Solution:
■ Use the simpler function Taylor Polynomial to find these values. This has to be based on a evaluation at a known point for example at 0 since we know $e^{0}=1$.
■ Error in Taylor Polynomial

- Practice Problems for you

Evaluation of "complicated" functions at a point using "simpler" functions

Math 4329:
Numerical
Analysis
Lecture 01
Natasha S.
Sharma, PhD

Problem: What is the value of $e^{0}, e^{-1}, e^{-0.5}$?

Solution:
■ Use the simpler function Taylor Polynomial to find these values. This has to be based on a evaluation at a known point for example at 0 since we know $e^{0}=1$.

- Error in Taylor Polynomial
- Practice Problems for you.

Taylor Polynomial

Math 4329:

Taylor series is a representation of a function $f(x)$ as an infinite sum of terms that are calculated from the values of the function's derivatives at a single point a.

■ $f(x)=f(a) / 0!+f^{\prime}(a)(x-a) / 1!+f^{\prime \prime}(a) \frac{(x-a)^{2}}{2!}+$

Taylor Polynomial

Math 4329:

Taylor series is a representation of a function $f(x)$ as an infinite sum of terms that are calculated from the values of the function's derivatives at a single point a.

- $f(x)=f(a) / 0!+f^{\prime}(a)(x-a) / 1!+f^{\prime \prime}(a) \frac{(x-a)^{2}}{2!}+\cdots$

■ Short Hand Infinite Series Form:

UEP
 Taylor Polynomial

Math 4329:
Numerical
Analysis
Lecture 01
Natasha S.
Sharma, PhD

Taylor series is a representation of a function $f(x)$ as an infinite sum of terms that are calculated from the values of the function's derivatives at a single point a.
$\square f(x)=f(a) / 0!+f^{\prime}(a)(x-a) / 1!+f^{\prime \prime}(a) \frac{(x-a)^{2}}{2!}+\cdots$
\square Short Hand Infinite Series Form: $\sum_{n=0}^{\infty} f^{n}(a) \frac{(x-a)^{n}}{n!}$
■ Example: Taylor Series for $f(x)=e^{x}$ at $a=0$ is

Taylor Polynomial

Math 4329:
Numerical
Analysis
Lecture 01
Natasha S.
Sharma, PhD

Taylor series is a representation of a function $f(x)$ as an infinite sum of terms that are calculated from the values of the function's derivatives at a single point a.
$\square f(x)=f(a) / 0!+f^{\prime}(a)(x-a) / 1!+f^{\prime \prime}(a) \frac{(x-a)^{2}}{2!}+\cdots$
\square Short Hand Infinite Series Form: $\sum_{n=0}^{\infty} f^{n}(a) \frac{(x-a)^{n}}{n!}$

- Example: Taylor Series for $f(x)=e^{x}$ at $a=0$ is

$$
f(x)=\frac{x^{0}}{0!}+\frac{x^{1}}{1}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots
$$

Taylor Polynomial

Taylor series is a representation of a function $f(x)$ as an infinite sum of terms that are calculated from the values of the function's derivatives at a single point a.
$\square f(x)=f(a) / 0!+f^{\prime}(a)(x-a) / 1!+f^{\prime \prime}(a) \frac{(x-a)^{2}}{2!}+\cdots$
\square Short Hand Infinite Series Form: $\sum_{n=0}^{\infty} f^{n}(a) \frac{(x-a)^{n}}{n!}$

- Example: Taylor Series for $f(x)=e^{x}$ at $a=0$ is

$$
f(x)=\frac{x^{0}}{0!}+\frac{x^{1}}{1}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots
$$

Idea: Take $x=-1,-0.5$ and obtain approximations to e^{x} using the "finite" Taylor series at $a=0$.

UE
 Finite Taylor Series: Taylor Polynomial

Math 4329:
Numerical

Finite Taylor Series: Taylor Polynomial

Math 4329:
Numerical
Analysis Lecture 01

Natasha S. Sharma, PhD

- $f(x)=f(a) / 0!+f^{\prime}(a)(x-a) / 1!+f^{\prime \prime}(a) \frac{(x-a)^{2}}{2!}+\cdots$
- "Finite Taylor Series" is a Taylor polynomial obtained by truncating the Taylor Series.

Finite Taylor Series: Taylor Polynomial

Math 4329:
Numerical
Analysis
Lecture 01
Natasha S. Sharma, PhD

- $f(x)=f(a) / 0!+f^{\prime}(a)(x-a) / 1!+f^{\prime \prime}(a) \frac{(x-a)^{2}}{2!}+\cdots$

■ "Finite Taylor Series" is a Taylor polynomial obtained by truncating the Taylor Series.

■ Example Taylor Polynomial of Degree 1 at $a=0$ is

Taylor Polynomial of degree 1 at 0

- Taylor Series for $f(x)=e^{x}$ at $a=0$ is

Degree 2 Taylor Polynomial at 0

Finite Taylor Series: Taylor Polynomial

Math 4329:
Numerical
Analysis
Lecture 01
Natasha S. Sharma, PhD

- $f(x)=f(a) / 0!+f^{\prime}(a)(x-a) / 1!+f^{\prime \prime}(a) \frac{(x-a)^{2}}{2!}+\cdots$
- "Finite Taylor Series" is a Taylor polynomial obtained by truncating the Taylor Series.
- Example Taylor Polynomial of Degree 1 at $a=0$ is

$$
f(x)=\underbrace{\frac{x^{0}}{0!}+\frac{x^{1}}{1!}}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots
$$

- Taylor Series for $f(x)=e^{x}$ at $a=0$ is

Degree 2 Taylor Polynomial at 0

Finite Taylor Series: Taylor Polynomial

Math 4329:
Numerical
Analysis
Lecture 01
Natasha S. Sharma, PhD

- $f(x)=f(a) / 0!+f^{\prime}(a)(x-a) / 1!+f^{\prime \prime}(a) \frac{(x-a)^{2}}{2!}+\cdots$

■ "Finite Taylor Series" is a Taylor polynomial obtained by truncating the Taylor Series.

- Example Taylor Polynomial of Degree 1 at $a=0$ is

$$
f(x)=\underbrace{\frac{x^{0}}{0!}+\frac{x^{1}}{1!}}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots
$$

- Taylor Series for $f(x)=e^{x}$ at $a=0$ is

$$
f(x)=\underbrace{\frac{x^{0}}{0}+\frac{x^{1}}{1}+\frac{x^{2}}{2}}+\frac{x^{3}}{3!}+\cdots
$$

Degree 2 Taylor Polynomial at 0

Taylor Polynomials of degree n

Math 4329:
Numerical
Analysis
Lecture 01
Natasha S.
Sharma, PhD

Taylor Polynomials of degree n

Math 4329:
Numerical
Analysis
Lecture 01
Natasha S. Sharma, PhD

- $p_{1}(x)=\frac{f(a)}{0!}+\frac{f^{\prime}(a)(x-a)}{1!}$
- $p_{2}(x)=\frac{f(a)}{0!}+\frac{f^{\prime}(a)(x-a)}{1!}+\frac{f^{\prime \prime}(a)(x-a)^{2}}{2!}$

Taylor Polynomials of degree n

Math 4329:
Numerical Analysis Lecture 01

- $p_{1}(x)=\frac{f(a)}{0!}+\frac{f^{\prime}(a)(x-a)}{1!}$
- $p_{2}(x)=\frac{f(a)}{0!}+\frac{f^{\prime}(a)(x-a)}{1!}+\frac{f^{\prime \prime}(a)(x-a)^{2}}{2!}$
- $p_{3}(x)=\frac{f(a)}{0!}+\frac{f^{\prime}(a)(x-a)}{1!}$

Taylor Polynomials of degree n

Math 4329:
Numerical
Analysis
Lecture 01
Natasha S.
Sharma, PhD

- $p_{1}(x)=\frac{f(a)}{0!}+\frac{f^{\prime}(a)(x-a)}{1!}$
- $p_{2}(x)=\frac{f(a)}{0!}+\frac{f^{\prime}(a)(x-a)}{1!}+\frac{f^{\prime \prime}(a)(x-a)^{2}}{2!}$
- $p_{3}(x)=\frac{f(a)}{0!}+\frac{f^{\prime}(a)(x-a)}{1!}+\frac{f^{\prime \prime}(a)(x-a)^{2}}{2!}+\frac{f^{\prime \prime \prime}(a)(x-a)^{3}}{3!} \cdots$

■ Graphical Representation?

Taylor Polynomials of degree n

Math 4329:
Numerical Analysis Lecture 01

Natasha S. Sharma, PhD

- $p_{1}(x)=\frac{f(a)}{0!}+\frac{f^{\prime}(a)(x-a)}{1!}$
- $p_{2}(x)=\frac{f(a)}{0!}+\frac{f^{\prime}(a)(x-a)}{1!}+\frac{f^{\prime \prime}(a)(x-a)^{2}}{2!}$
- $p_{3}(x)=\frac{f(a)}{0!}+\frac{f^{\prime}(a)(x-a)}{1!}+\frac{f^{\prime \prime}(a)(x-a)^{2}}{2!}+\frac{f^{\prime \prime \prime}(a)(x-a)^{3}}{3!} \cdots$
- Graphical Representation?

1

Taylor Polynomials of degree n

Math 4329:
Numerical
Analysis
Lecture 01
Natasha S. Sharma, PhD

- $p_{1}(x)=\frac{f(a)}{0!}+\frac{f^{\prime}(a)(x-a)}{1!}$
- $p_{2}(x)=\frac{f(a)}{0!}+\frac{f^{\prime}(a)(x-a)}{1!}+\frac{f^{\prime \prime}(a)(x-a)^{2}}{2!}$
- $p_{3}(x)=\frac{f(a)}{0!}+\frac{f^{\prime}(a)(x-a)}{1!}+\frac{f^{\prime \prime}(a)(x-a)^{2}}{2!}+\frac{f^{\prime \prime \prime}(a)(x-a)^{3}}{3!} \cdots$
- Graphical Representation?
$1 p_{1}(x)$ is a line.
$2 p_{2}(x)$ is a parabolic function.

Taylor Polynomials of degree n

Math 4329:
Numerical Analysis Lecture 01

Natasha S. Sharma, PhD

- $p_{1}(x)=\frac{f(a)}{0!}+\frac{f^{\prime}(a)(x-a)}{1!}$
- $p_{2}(x)=\frac{f(a)}{0!}+\frac{f^{\prime}(a)(x-a)}{1!}+\frac{f^{\prime \prime}(a)(x-a)^{2}}{2!}$
- $p_{3}(x)=\frac{f(a)}{0!}+\frac{f^{\prime}(a)(x-a)}{1!}+\frac{f^{\prime \prime}(a)(x-a)^{2}}{2!}+\frac{f^{\prime \prime \prime}(a)(x-a)^{3}}{3!} \cdots$
- Graphical Representation?
$1 p_{1}(x)$ is a line.
$2 p_{2}(x)$ is a parabolic function.
$3 p_{3}(x)$ is a cubic function

Taylor Polynomials of degree n

Math 4329:
Numerical
Analysis
Lecture 01
Natasha S. Sharma, PhD

- $p_{1}(x)=\frac{f(a)}{0!}+\frac{f^{\prime}(a)(x-a)}{1!}$
- $p_{2}(x)=\frac{f(a)}{0!}+\frac{f^{\prime}(a)(x-a)}{1!}+\frac{f^{\prime \prime}(a)(x-a)^{2}}{2!}$
- $p_{3}(x)=\frac{f(a)}{0!}+\frac{f^{\prime}(a)(x-a)}{1!}+\frac{f^{\prime \prime}(a)(x-a)^{2}}{2!}+\frac{f^{\prime \prime \prime}(a)(x-a)^{3}}{3!} \cdots$
- Graphical Representation?
$1 p_{1}(x)$ is a line.
$2 p_{2}(x)$ is a parabolic function.
$3 p_{3}(x)$ is a cubic function.

Evaluate e^{-1} and $e^{-0.5}$

Math 4329:
Numerical Analysis Lecture 01 Natasha S. Sharma, PhD

$$
\text { ■ } p_{1}(x)=\frac{f(a)}{0!}+\frac{f^{\prime}(a)(x-a)}{1!} \text { here } f(x)=e^{x}, \quad a=0
$$

$$
p_{1}(-1)=1+\frac{(-1-0)}{1!}
$$

Evaluate e^{-1} and $e^{-0.5}$

Math 4329:
Numerical Analysis Lecture 01

Natasha S. Sharma, PhD

- $p_{1}(x)=\frac{f(a)}{0!}+\frac{f^{\prime}(a)(x-a)}{1!}$ here $f(x)=e^{x}, a=0$

$$
p_{1}(-1)=1+\frac{(-1-0)}{1!}
$$

$$
\text { ■ } p_{2}(x)=\frac{f(a)}{0!}+\frac{f^{\prime}(a)(x-a)}{1!}+\frac{f^{\prime \prime}(a)(x-a)^{2}}{2!}
$$

Evaluate e^{-1} and $e^{-0.5}$

Math 4329:
Numerical Analysis Lecture 01

Natasha S. Sharma, PhD

- $p_{1}(x)=\frac{f(a)}{0!}+\frac{f^{\prime}(a)(x-a)}{1!}$ here $f(x)=e^{x}, a=0$

$$
p_{1}(-1)=1+\frac{(-1-0)}{1!}
$$

- $p_{2}(x)=\frac{f(a)}{0!}+\frac{f^{\prime}(a)(x-a)}{1!}+\frac{f^{\prime \prime}(a)(x-a)^{2}}{2!}$

$$
p_{2}(-1)=1+\frac{(-1-0)}{1!}+\frac{(-1-0)^{2}}{2!}
$$

Evaluate e^{-1} and $e^{-0.5}$

Math 4329:
Numerical
Analysis
Lecture 01
Natasha S.
Sharma, PhD

- $p_{1}(x)=\frac{f(a)}{0!}+\frac{f^{\prime}(a)(x-a)}{1!}$ here $f(x)=e^{x}, a=0$

$$
p_{1}(-1)=1+\frac{(-1-0)}{1!}
$$

$$
p_{2}(x)=\frac{f(a)}{0!}+\frac{f^{\prime}(a)(x-a)}{1!}+\frac{f^{\prime \prime}(a)(x-a)^{2}}{2!}
$$

$$
p_{2}(-1)=1+\frac{(-1-0)}{1!}+\frac{(-1-0)^{2}}{2!}
$$

$$
p_{3}(x)=\frac{f(a)}{0!}+\frac{f^{\prime}(a)(x-a)}{1!}+\frac{f^{\prime \prime}(a)(x-a)^{2}}{2!}+\frac{f^{\prime \prime \prime}(a)(x-a)^{3}}{3!} \cdots
$$

$$
p_{3}(-1)=1+\frac{(-1-0)}{1!}+\frac{(-1-0)^{2}}{2!}+\frac{(-1-0)^{3}}{3!}
$$

Evaluate e^{-1} and $e^{-0.5}$

Math 4329:
Numerical
Analysis
Lecture 01
Natasha S.
Sharma, PhD

- $p_{1}(x)=\frac{f(a)}{0!}+\frac{f^{\prime}(a)(x-a)}{1!}$ here $f(x)=e^{x}, a=0$

$$
p_{1}(-1)=1+\frac{(-1-0)}{1!}
$$

$$
p_{2}(x)=\frac{f(a)}{0!}+\frac{f^{\prime}(a)(x-a)}{1!}+\frac{f^{\prime \prime}(a)(x-a)^{2}}{2!}
$$

$$
p_{2}(-1)=1+\frac{(-1-0)}{1!}+\frac{(-1-0)^{2}}{2!}
$$

$$
p_{3}(x)=\frac{f(a)}{0!}+\frac{f^{\prime}(a)(x-a)}{1!}+\frac{f^{\prime \prime}(a)(x-a)^{2}}{2!}+\frac{f^{\prime \prime \prime}(a)(x-a)^{3}}{3!} \cdots
$$

$$
p_{3}(-1)=1+\frac{(-1-0)}{1!}+\frac{(-1-0)^{2}}{2!}+\frac{(-1-0)^{3}}{3!}
$$

Evaluate e^{-1} and $e^{-0.5}$

Math 4329:
Numerical
Analysis
Lecture 01
Natasha S.
Sharma, PhD

- $p_{1}(x)=\frac{f(a)}{0!}+\frac{f^{\prime}(a)(x-a)}{1!}$ here $f(x)=e^{x}, a=0$

$$
p_{1}(-1)=1+\frac{(-1-0)}{1!}
$$

$$
p_{2}(x)=\frac{f(a)}{0!}+\frac{f^{\prime}(a)(x-a)}{1!}+\frac{f^{\prime \prime}(a)(x-a)^{2}}{2!}
$$

$$
p_{2}(-1)=1+\frac{(-1-0)}{1!}+\frac{(-1-0)^{2}}{2!}
$$

$$
p_{3}(x)=\frac{f(a)}{0!}+\frac{f^{\prime}(a)(x-a)}{1!}+\frac{f^{\prime \prime}(a)(x-a)^{2}}{2!}+\frac{f^{\prime \prime \prime}(a)(x-a)^{3}}{3!} \cdots
$$

$$
p_{3}(-1)=1+\frac{(-1-0)}{1!}+\frac{(-1-0)^{2}}{2!}+\frac{(-1-0)^{3}}{3!}
$$

Exercise: Evaluate $e^{-0.5}$

Error in Taylor Polynomial

Math 4329:
Numerical

Error in Taylor Polynomial

Math 4329:
Numerical Analysis Lecture 01

Natasha S Sharma, PhD

Error $=$ True Value - Approximated Value

■ $e(x)=f(x)-p_{n}(x)$ where, $e(x)$ denotes the error at x $f(x)$ is the function at x, $p_{n}(x)$ denotes the degree n polynomial

Error in Taylor Polynomial

Math 4329:
Numerical
Analysis
Lecture 01
Natasha S. Sharma, PhD

Error $=$ True Value - Approximated Value

- $e(x)=f(x)-p_{n}(x)$
where,
$e(x)$ denotes the error at x
$f(x)$ is the function at x,
$p_{n}(x)$ denotes the degree n polynomial
- Problem is we do not know $f(x)$?

Error in Taylor Polynomial

Math 4329:
Numerical
Analysis
Lecture 01
Natasha S. Sharma, PhD

Error $=$ True Value - Approximated Value

- $e(x)=f(x)-p_{n}(x)$
where,
$e(x)$ denotes the error at x
$f(x)$ is the function at x,
$p_{n}(x)$ denotes the degree n polynomial
- Problem is we do not know $f(x)$?

■ Error Representation Formula needed!

Error in Taylor Polynomial

Math 4329:
Numerical
Analysis
Lecture 01
Natasha S.
Sharma, PhD

Error $=$ True Value - Approximated Value

- $e(x)=f(x)-p_{n}(x)$
where,
$e(x)$ denotes the error at x
$f(x)$ is the function at x,
$p_{n}(x)$ denotes the degree n polynomial
- Problem is we do not know $f(x)$?

■ Error Representation Formula needed!

$$
f(x)-p_{n}(x)=\frac{(x-a)^{n+1}}{(n+1)!} f^{(n+1)}\left(c_{x}\right)
$$

c_{x} an unknown point between a and x.

