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@ Last Lecture

Math 4329:
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Analysis

Lecture 02 m |f(—1)— p1(—1)] <0.5 and
|£(—0.5) — p1(—0.5)| < 0.125.
m (1) =0.3679, p1(~1) =0, p2(—1) = 0.5.
m f(—0.5) = 0.6065

p1(—0.5) = 0.5, p2(—0.5) = 0.625
m Taylor's Remainder to calculate the approximation error

x — g)*t1
Raoe)i= ) = pu(x) = E =Lt o)

Cx is an unknown number between x and a.




@ Three types of questions we are interested in

answering

Naral m Use the Taylor polynomial of degree 1 and 2 to find an

B approximation to V2 = 1.41421356237.
Natasha S Solution:
Sferma, Fho fx)=vx+1,x=1.
f'(x) = 1 F(x) = 1
2y/x+1 4(x + 1)3/%°
Next step: Pick the suitable choice of ‘a’.
pi(x) = £(0) + F/(0)x =1+,
" 2 2
pz(X)zpl(x)+%:1+g—%.

V2~ 1.5 and v/2 ~ 1.375.
m How to approximate the value of log(2)?
Hint The choice of a is non zero.
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Natasha S m Bound the error in using the degree 3 Taylor polynomial
. p3(x) to approximate e on [—1, 1] using Taylor's
remainder formula.

m Solution:

IX[* e,
41
1

<

= 24°
1

< —e!l' =0.1133.
24

N

[f(x) = p3(x)] <

Cx
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Natasha S m Bound the error in using the degree 3 Taylor polynomial
. p3(x) to approximate e on [—1, 1] using Taylor's
remainder formula.

m Solution:

|x* |4
a1 €
1

Eae

< ie1 =0.1133.
24

[£(x) = p3(x)| <

Cx



@ Three types of questions we are interested in

answering

Math 4329:

P m How large should the degree 2a+1 2n be of the Taylor
polynomial pa,(x) to have

Lecture 02

| cos(x) — pan(x)] < 107*

_r i)
for all 5 <Sx < 5T

m Solution:
. - ’X‘(2n+2)
) = panl0)] < 757 cos(e:)
|X‘2”+2
- %1
S@nran”
‘g‘2n+2

~ (2n+2)!
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(%)2n+2

~ (2n+2)!
<107*

n = 3 gives 0.00091926027 > 10~
n = 4 gives 0.00002520204 < 10~4.
Answer: n > 4.

Repeat the previous problem with cos(x) replaced with
log(x + 2).
You can now work out the problems from Worksheet 01!


http://www.math.utep.edu/Faculty/nsharma/public_html/m4329_ws01.pdf

@ Chapter 2: Error and Computer Arithmetic
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With each lecture, our definition of numerical analysis is going
to evolve.

Numerical Analysis is the study of techniques to
computationally solve a problem that is, develop a sequence of
numerical calculations to get a suitable solution.

This suitable answer is determined by the error tolerance
denoted by €.

Part of this process is to take into account the errors that arise
in these calculations from the errors in the arithmetic
operations or from other sources.




@ Chapter 2: Error and Computer Arithmetic

Math 4329:
N =) . . . H
\nalysis Computer use binary arithmetic, representing each number as a

Analysis

L 02 . .. .
s binary number: a finite sum of integer powers of 2.

Natasha S

SRl Some numbers can be represented exactly, but others such as

11 1
30> 1000 1000 Ccannot be represented exactly.

2125 =2+4273

has an exact representation in binary but the following number
has an inexact representation:

312t 420404105 08

Furthermore, 7 have no finite representation in either decimal

or binary number system.
Please see Appendix E of the textbook for a more details.
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Fixed-Point numbers used to store integers.

Each number is stored in a computer word of 32 binary
digits (bits) with values 0 or 1. Hence there are 232
different numbers can be stored.

If we permit negative numbers, we can represent integers
in the range —273! < x < 231 — 1 since there are 232 such
numbers. Since 23! &~ 2.1 x 10°.

The range of the fixed-point numbers is too restrictive for
scientific computing. The stored numbers that are stored
are equally spaced.

Floating-point numbers approximate real numbers. The
numbers are not equally spaced and a wide range of
numbers are represented exactly.
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Natasha S For x # 0 written in decimal system, we can uniquely write it as
Sharma, PhD

x=0-x-10°¢

where
o =41 or —1 is the sign,
e is an integer and is the exponent and
1 < x < 10, the significand or mantissa
Example: 124.62 = 0 (1.2462) -10¢, with 0 =1 and e = 2.

X
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number of digits in the mantissa x

Suppose we limit
number of digits in the mantissa X to 4.

This is the four-digit decimal floating point arithmetic. That is,
we can only store the first four digits of a number accurately
even if the fourth digit is obtained by rounding.
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Natasha S Limitations on the the floating point representation of any
Sharma, PhD X E R iS

number of digits in the mantissa x
size of e
Suppose we limit
number of digits in the mantissa X to 4.
—99<e<99
This is the four-digit decimal floating point arithmetic. That is,

we can only store the first four digits of a number accurately
even if the fourth digit is obtained by rounding.



@ Floating-Point Representation of a binary number x
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Analysis
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X=0-x2°
where
o = 41 or —1 is the sign,

e is an integer and is the exponent and

X is a binary fraction satisfying
(1)2 <X < (10)2,

which in decimal translates to 1 < x < 2.

Example: x = (11011.0111), = 0 (1.10110111), -2¢, with

o =1and e =4 = (100),.
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Lecture 02

Natacha Number of digits in x: the precision of the binary

SLiETmE, (Fl floating-point representation of x,

size of e.
The IEEE single precision floating-point representation of x has

Precision of 24 bits
—126 < e <127

X:U-(1.3132-~323) . 2¢

stores 32 bits with

b1 bobs---bg bigb11 -+ b3
~ -
o E=e+127 X
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The IEEE double precision floating-point representation of x
(H,u,w;-m S haS
Sharma, PhD

Precision of 53 bits
—1022 < e <1023
X =0"- (1.3132 s 352) . 2¢

stores 64 bits with

b1 bobs - - b12 bizbig - - - bea
—~ ~
o E=et1023 X
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Original Errors
m Modeling Errors
m Blunders and mistakes
m Physical Measurement Errors
=
=

Machine Representation and Arithmetic Errors
Mathematical Approximation Errors. For instance:
1

i e~ dx using Taylor approximation.

0

Consequence of Errors
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Lecture 02 Error in a computational science problem:

Original Errors
m Modeling Errors
m Blunders and mistakes
m Physical Measurement Errors
=
=

Machine Representation and Arithmetic Errors

Mathematical Approximation Errors. For instance:
1

i e~ dx using Taylor approximation.

0

Consequence of Errors
m Loss of Significance
m Noise in function evaluation
m Under and overflow errors
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Consider evaluation of

f(x)=x(vVx+1—+/x) forx=10°p=0,1,2,3,4,5.

Natasha S
Sharma, PhD

As x increases there are fewer values of accuracy in the
computed value f(x).

v/101 = 10.04999, /100 = 10, v/x + 1 — /x = 0.0499000

rounded

however the true value is 0.0498756.
This calculation admits a loss of significance error. Three digits
of accuracy were canceled by subtraction of the corresponding

digits in v/x = v/100.
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There are two causes of loss of this accuracy:

Natasha S

Sharma, FhD the mathematical form of f(x)

the finite precision 6-digit decimal arithmetic used

Increasing the precision is not possible always so instead we can
consider a reformulation of f(x).

)= i v

yields the right values on a 6 digit decimal calculator that is
f(100)= 4.98756.



0z

Math 4329:

N:,?;Ty”scifl Consider evaluation of
Lecture 02

Natasha S 1 —_
Sharm, PAD) fo) = 1o ) g —10P p=1,2.3,4.5,

X

on a computer with 9-digit decimal arithmetic used.

For x = 0.01, cos(x) = 0.9999500004 (= 0.999950000416665)

1 — cos(0.01) = 0.0000499996 (= 4.999958333495869¢ — 05)

which only have 5 significant digits with 4 lost due to
subtraction.

To avoid loss due to subtraction of nearly equal quantities, we
use the Taylor approximation for cos(x) about 0.
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where Rg(x) = X

Flx) = L= cos() 1 (X2 X COS(CX)X*‘)

x2 x2\2 41 " 6l gl
_1 2 xt cos(ax®
2 41 6l 8l

1
—>§ as x — 0.

This is in conformity with applying L'Hopital’s Rule to obtain
the true limiting value %
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For |x| < 0.1,

cos(cy)x®, _ (0.1)°
S < S <25e 11

We can choose a smaller polynomial degree however that will
increase the approximation error.



Loss-of-Significance Error
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When two nearly equal quantities are subtracted, leading sig-
nificant digits are lost. This can be circumvented by:

Replace the function with a simpler function (example

use the Taylor polynomial).
Example:

x> x* X6

cos(x)zl—g-l—m—a—i—l?ﬁ(x)

8 o
where Rg(x) = %5 cos(cx) where ¢, is an unknown
between 0 and x.

Reformulate the mathematical expression for example

_ (WX H1P = (vX)°
Vx+1—+/x= N TS




@ Message:
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Natasha S. subtraction especially when the quantities being
Sharma, PhD
B subtracted are close to each other.

This can be done by reformulating the function in a
mathematically equivalent but numerically more accurate
manner.

Another example to evaluate e~/ instead of using the Taylor
series (with the remainder term) applied to f(x) = e~’ which
will involve lots of subtraction, we consider applying the Taylor
series to f(x) = e’. That is:

a1 1

e

e’ Taylor Series for e’



@ Relative Error
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Natasha S.
Sharma, PhD EI’rOI’(Xa) = Xt — X3
: )
where x; denotes a true value. This can be a positive or
a negative quantity.
Relative Error is defined as

I

Error(x,)  xt — xa
Rel = =
(x) true value Xt

Example: For the approximation x, to

xe =m =2 ~3.14159265 - - -.

Xa, using 7-digit precision is 3.1415927, Rel(x,,) = =2 =?.
For xa, = 3.141593 what is Rel(x;,) = ~—% =?




@ Relative Error versus Absolute Error?
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Jsteshe S The precise distance between two cities A and B is
R x71 = 100 km and the measured distance is x5; = 99 km.

Consider the following two problems:

1
Error(xa1) :== 1 km , Rel(xa1) = 100 = 0.01 = 1%.

The precise distance between two cities A and B is
xT72 = 2 km and the measured distance is x5 = 1 km.

1
Error(xa2) := 1 km , Rel(xz2) = 5= 0.5 = 50%.
Relative Error is more true representation of the aprroximation
error!
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e The number of significant digits in an approximated value
ecture . . . .. H
o & X5 is the number of its leading digits that are correct relative

Sharma, PhD to the corresponding digits in the true value x;.

Example: The following approximation x, has at least m digits
of significance.

Xt =41 8248348445 3" dm dm+1 dm42
]xt—xa|: 000- 00O0:---0 bmt1 bmy2

Workout-example:

2
Xz = 0.222, x; = 9 = 0.222222 on a 6-digit precision computer,

|x¢ — xa| = 0.000222 = 3 digits of significance.



