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Last Lecture

|f (−1)− p1(−1)| ≤ 0.5 and
|f (−0.5)− p1(−0.5)| ≤ 0.125.

f (−1) = 0.3679, p1(−1) = 0, p2(−1) = 0.5.

f (−0.5) = 0.6065
p1(−0.5) = 0.5, p2(−0.5) = 0.625

Taylor’s Remainder to calculate the approximation error

Rn(x) := f (x)− pn(x) =
(x − a)n+1

(n + 1)!
f (n+1)(cx)

cx is an unknown number between x and a.
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Three types of questions we are interested in
answering

Use the Taylor polynomial of degree 1 and 2 to find an
approximation to

√
2 = 1.41421356237.

Solution:
1 f (x) =

√
x + 1, x = 1.

2

f ′(x) =
1

2
√
x + 1

, f ′′(x) =
−1

4(x + 1)3/2
.

3 Next step: Pick the suitable choice of ‘a’.
4

p1(x) = f (0) + f ′(0)x = 1 +
x

2
,

p2(x) = p1(x) +
f ′′(0)x2

2
= 1 +

x

2
− x2

8
.

5
√

2 ≈ 1.5 and
√

2 ≈ 1.375.

How to approximate the value of log(2)?
Hint The choice of a is non zero.
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Three types of questions we are interested in
answering

Bound the error in using the degree 3 Taylor polynomial
p3(x) to approximate ex on [−1, 1] using Taylor’s
remainder formula.

Solution:

|f (x)− p3(x)| ≤ |x |
4

4!
ecx

≤ 1

24
ecx

≤ 1

24
e1 = 0.1133.
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Three types of questions we are interested in
answering

How large should the degree 2n+1 2n be of the Taylor
polynomial p2n(x) to have

| cos(x)− p2n(x)| ≤ 10−4

for all −π
2 ≤ x ≤ π

2 ?

Solution:

|f (x)− p2n(x)| ≤ |x |(2n+2)

((2n + 2)!
| cos(cx)|

≤ |x |2n+2

(2n + 2)!
∗ 1

≤
|π2 |

2n+2

(2n + 2)!
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(π2 )2n+2

(2n + 2)!

≤ 10−4

n = 3 gives 0.00091926027 > 10−4

n = 4 gives 0.00002520204 < 10−4.
Answer: n ≥ 4.

Repeat the previous problem with cos(x) replaced with
log(x + 2).

You can now work out the problems from Worksheet 01!

http://www.math.utep.edu/Faculty/nsharma/public_html/m4329_ws01.pdf
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Chapter 2: Error and Computer Arithmetic

With each lecture, our definition of numerical analysis is going
to evolve.
Numerical Analysis is the study of techniques to
computationally solve a problem that is, develop a sequence of
numerical calculations to get a suitable solution.
This suitable answer is determined by the error tolerance
denoted by ε.
Part of this process is to take into account the errors that arise
in these calculations from the errors in the arithmetic
operations or from other sources.
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Chapter 2: Error and Computer Arithmetic

Computer use binary arithmetic, representing each number as a
binary number: a finite sum of integer powers of 2.
Some numbers can be represented exactly, but others such as
1

10 ,
1

100 ,
1

1000 , · · · cannot be represented exactly.

2.125 = 2 + 2−3

has an exact representation in binary but the following number
has an inexact representation:

3.1 ≈ 21 + 20 + 2−4 + 2−5 + 2−8 + · · · .

Furthermore, π have no finite representation in either decimal
or binary number system.
Please see Appendix E of the textbook for a more details.
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Computers use 2 formats for storing numbers:

1 Fixed-Point numbers used to store integers.
Each number is stored in a computer word of 32 binary
digits (bits) with values 0 or 1. Hence there are 232

different numbers can be stored.
If we permit negative numbers, we can represent integers
in the range −2−31 ≤ x ≤ 231 − 1 since there are 232 such
numbers. Since 231 ≈ 2.1× 109.
The range of the fixed-point numbers is too restrictive for
scientific computing. The stored numbers that are stored
are equally spaced.

2 Floating-point numbers approximate real numbers. The
numbers are not equally spaced and a wide range of
numbers are represented exactly.
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Floating-Point Representation

For x 6= 0 written in decimal system, we can uniquely write it as

x = σ · x̄ · 10e

where

1 σ = +1 or −1 is the sign,

2 e is an integer and is the exponent and

3 1 ≤ x̄ < 10, the significand or mantissa

Example: 124.62 = σ (1.2462)︸ ︷︷ ︸
x̄

·10e , with σ = 1 and e = 2.
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Floating-Point Representation

Limitations on the the floating point representation of any
x ∈ R is

1 number of digits in the mantissa x̄

2 size of e

Suppose we limit

1 number of digits in the mantissa x̄ to 4.

2 −99 ≤ e ≤ 99

This is the four-digit decimal floating point arithmetic. That is,
we can only store the first four digits of a number accurately
even if the fourth digit is obtained by rounding.
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Floating-Point Representation of a binary number x

For x 6= 0 written in binary system, we can express it as

x = σ · x̄ · 2e

where

1 σ = +1 or −1 is the sign,

2 e is an integer and is the exponent and

3 x̄ is a binary fraction satisfying

(1)2 ≤ x̄ < (10)2,

which in decimal translates to 1 ≤ x̄ < 2.

4 Example: x = (11011.0111)2 = σ (1.10110111)2︸ ︷︷ ︸
x̄

·2e , with

σ = 1 and e = 4 = (100)2.
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Floating-point representation of a binary number x is given by
the definition on the previous page with a restriction on

1 Number of digits in x̄ : the precision of the binary
floating-point representation of x ,

2 size of e.

The IEEE single precision floating-point representation of x has

1 Precision of 24 bits

2 −126 ≤ e ≤ 127

3

x = σ · (1.a1a2 · · · a23) · 2e

stores 32 bits with

b1︸︷︷︸
σ

b2b3 · · · b9︸ ︷︷ ︸
E=e+127

b10b11 · · · b32︸ ︷︷ ︸
x̄
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The IEEE double precision floating-point representation of x
has

1 Precision of 53 bits

2 −1022 ≤ e ≤ 1023

3

x = σ · (1.a1a2 · · · a52) · 2e

stores 64 bits with

b1︸︷︷︸
σ

b2b3 · · · b12︸ ︷︷ ︸
E=e+1023

b13b14 · · · b64︸ ︷︷ ︸
x̄
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Error in a computational science problem:

1 Original Errors

Modeling Errors
Blunders and mistakes
Physical Measurement Errors
Machine Representation and Arithmetic Errors
Mathematical Approximation Errors. For instance:
1∫

0

e−x
2

dx using Taylor approximation.

2 Consequence of Errors

Loss of Significance
Noise in function evaluation
Under and overflow errors
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Consequence of Errors: Loss of Significance

Consider evaluation of

f (x) = x(
√
x + 1−

√
x) for x = 10p, p = 0, 1, 2, 3, 4, 5.

As x increases there are fewer values of accuracy in the
computed value f (x).√

101 = 10.04999︸ ︷︷ ︸
rounded

,
√

100 = 10,
√
x + 1−

√
x = 0.0499000

however the true value is 0.0498756.
This calculation admits a loss of significance error. Three digits
of accuracy were canceled by subtraction of the corresponding
digits in

√
x =
√

100.
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There are two causes of loss of this accuracy:

1 the mathematical form of f (x)

2 the finite precision 6-digit decimal arithmetic used

Increasing the precision is not possible always so instead we can
consider a reformulation of f (x).

f (x) =
x√

x + 1 +
√
x

yields the right values on a 6 digit decimal calculator that is
f(100)= 4.98756.
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Consider evaluation of

f (x) =
1− cos(x)

x2
for x = 10−p, p = 1, 2, 3, 4, 5,

on a computer with 9-digit decimal arithmetic used.
For x = 0.01, cos(x) = 0.9999500004 (= 0.999950000416665)

1− cos(0.01) = 0.0000499996 (= 4.999958333495869e − 05)

which only have 5 significant digits with 4 lost due to
subtraction.
To avoid loss due to subtraction of nearly equal quantities, we
use the Taylor approximation for cos(x) about 0.
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2!
+

x4

4!
− x6

6!
+ R6(x) (1)

where R6(x) =
x8

8!
cos(cx).

f (x) =
1− cos(x)

x2
=

1

x2

(x2

2
− x4

4!
+

x6

6!
− cos(cx)x8

8!

)
=

1

2
− x2

4!
+

x4

6!
− cos(cx)x6

8!
.

→ 1

2
as x → 0.

This is in conformity with applying L’Hopital’s Rule to obtain
the true limiting value 1

2 .
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For |x | ≤ 0.1,

|cos(cx)x6

8!
| ≤ (0.1)6

8!
≤ 2.5e − 11

We can choose a smaller polynomial degree however that will
increase the approximation error.
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Loss-of-Significance Error

When two nearly equal quantities are subtracted, leading sig-
nificant digits are lost. This can be circumvented by:

1 Replace the function with a simpler function (example
use the Taylor polynomial).
Example:

cos(x) = 1− x2

2!
+

x4

4!
− x6

6!
+ R6(x)

where R6(x) = x8

8! cos(cx) where cx is an unknown
between 0 and x .

2 Reformulate the mathematical expression for example

√
x + 1−

√
x =

(
√
x + 1)2 − (

√
x)2

√
x + 1 +

√
x

.
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Message:

1 In the evaluation of function, avoid the operation of
subtraction especially when the quantities being
subtracted are close to each other.

2 This can be done by reformulating the function in a
mathematically equivalent but numerically more accurate
manner.

Another example to evaluate e−7, instead of using the Taylor
series (with the remainder term) applied to f (x) = e−7 which
will involve lots of subtraction, we consider applying the Taylor
series to f (x) = e7. That is:

e−7 =
1

e7
=

1

Taylor Series for e7
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Relative Error

Absolute Error is denoted by error(xa) and is defined as

Error(xa) := xt − xa,

where xt denotes a true value. This can be a positive or
a negative quantity.
Relative Error is defined as

Rel(xa) :=
Error(xa)

true value
=

xt − xa
xt

,

Example: For the approximation xa to
xt = π = 22

7 ≈ 3.14159265 · · · .
xa7 using 7-digit precision is 3.1415927, Rel(xa7) =

π−xa7
π =?.

For xa6 = 3.141593 what is Rel(xa6) =
π−xa6

π =?
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Relative Error versus Absolute Error?

Consider the following two problems:

1 The precise distance between two cities A and B is
xT1 = 100 km and the measured distance is xa1 = 99 km.

Error(xa1) := 1 km , Rel(xa1) =
1

100
= 0.01 = 1%.

2 The precise distance between two cities A and B is
xT2 = 2 km and the measured distance is xa2 = 1 km.

Error(xa2) := 1 km , Rel(xa2) =
1

2
= 0.5 = 50%.

Relative Error is more true representation of the aprroximation
error!
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Significant Digits

The number of significant digits in an approximated value
xa is the number of its leading digits that are correct relative
to the corresponding digits in the true value xt .

Example: The following approximation xa has at least m digits
of significance.

xt = a1 a2 a3 · a4 a5 a6 · · · am am+1 am+2

|xt − xa| = 0 0 0 · 0 0 0 · · · 0 bm+1 bm+2

Workout-example:

xa = 0.222, xt =
2

9
≈ 0.222222 on a 6-digit precision computer,

|xt − xa| = 0.000222⇒ 3 digits of significance.


