Math 4329: Numerical Analysis Chapter 03: Bisection Method

Natasha S. Sharma, PhD

Mathematical question we are interested in numerically answering

Math 4329:
Numerical
Analysis
Chapter 03:
Bisection
Method
Natasha S. Sharma, PhD

- How to find the x-intercepts of a function $f(x)$? These x-intercepts are called the roots of the equation $f(x)=0$. Notation: denote the exact root by α. That means, $f(\alpha)=0$.

Naive Approach

Math 4329:
Numerical Analysis Chapter 03: Bisection Method

- Plotting the function and reading off the x-intercepts presents a graphical approach to finding the roots. This approach can be impractical.
- Instead, we seek approaches to get a formula for the root in terms of x.
For example, if $f(x)=3 x+4$, the root to $3 x+4=0$ is $x=-\frac{4}{3}$.
If $f(x)=e^{x} \sin (x)-x$ the root to $e^{x} \sin (x)-x=0$ is $x=0$

■ We use the numerical approach in cases when it is difficult to get a formula for the root.
What is the root to $f(x)=e^{x} \cos (x)-x=0$?

Naive Approach

Math 4329:
Numerical
Analysis
Chapter 03:
Bisection
Method

- Plotting the function and reading off the x-intercepts presents a graphical approach to finding the roots. This approach can be impractical.
- Instead, we seek approaches to get a formula for the root in terms of x For example, if $f(x)=3 x+4$, the root to $3 x+4=0$ is $x=-\frac{4}{3}$ If $f(x)=e^{x} \sin (x)-x$ the root to $e^{x} \sin (x)-x=0$ is $x=0$
- We use the numerical approach in cases when it is difficult to get a formula for the root What is the root to $f(x)=e^{x} \cos (x)-x=0$?

Naive Approach

Math 4329:
Numerical
Analysis
Chapter 03:
Bisection
Method

■ Plotting the function and reading off the x-intercepts presents a graphical approach to finding the roots. This approach can be impractical.

- Instead, we seek approaches to get a formula for the root in terms of x.
For example, if $f(x)=3 x+4$, the root to $3 x+4=0$ is $x=-\frac{4}{3}$.
If $f(x)=e^{x} \sin (x)-x$ the root to $e^{x} \sin (x)-x=0$ is $x=0$
- We use the numerical approach in cases when it is difficult
to get a formula for the root.
What is the root to $f(x)=e^{x} \cos (x)-x=0$?

Naive Approach

Math 4329:
Numerical
Analysis
Chapter 03:
Bisection
Method

■ Plotting the function and reading off the x-intercepts presents a graphical approach to finding the roots. This approach can be impractical.

- Instead, we seek approaches to get a formula for the root in terms of x.
For example, if $f(x)=3 x+4$, the root to $3 x+4=0$ is $x=-\frac{4}{3}$.
If $f(x)=e^{x} \sin (x)-x$ the root to $e^{x} \sin (x)-x=0$ is
$x=0$
- We use the numerical approach in cases when it is difficult to get a formula for the root.
What is the root to $f(x)=e^{x} \cos (x)-x=0$?

Roadmap for the numerical method to finding root

Math 4329
Numerical Analysis Chapter 03: Bisection Method

Each of the numerical approaches fit the following structure:
1 Start with an initial guess x_{0} and set an error tolerance $\varepsilon>0$. For instance, $\varepsilon=10^{-4}$.

2 Generate a sequence of approximations to α such that $f\left(x_{n}\right)$ is getting closer to 0 How close is good enough?

3
\square
44 Such methods are called iterative methods because it is based on the iterations indexed by n generating the approximations to the root α x_{n} are called the iterates.

Roadmap for the numerical method to finding root

Math 4329
Numerical
Analysis
Chapter 03:
Bisection
Method
Natasha S.
Sharma, PhD

Each of the numerical approaches fit the following structure:
1 Start with an initial guess x_{0} and set an error tolerance $\varepsilon>0$. For instance, $\varepsilon=10^{-4}$.

2 Generate a sequence of approximations to α $x_{1}, x_{2}, \cdots, x_{n} \cdots$ such that $f\left(x_{n}\right)$ is getting closer to 0 . How close is good enough?

44 Such methods are called iterative methods because it is based on the iterations indexed by n generating the approximations to the root α x_{n} are called the iterates.

Roadmap for the numerical method to finding root

Math 4329:
Numerical
Analysis
Chapter 03:
Bisection
Method
Natasha S.
Sharma, PhD

Each of the numerical approaches fit the following structure:
1 Start with an initial guess x_{0} and set an error tolerance $\varepsilon>0$. For instance, $\varepsilon=10^{-4}$.

2 Generate a sequence of approximations to α $x_{1}, x_{2}, \cdots, x_{n} \cdots$ such that $f\left(x_{n}\right)$ is getting closer to 0 . How close is good enough?

3

$$
\left|f\left(x_{n}\right)\right|<\varepsilon \text { and }\left|x_{n}-x_{n-1}\right|<\varepsilon .
$$

4 Such methods are called iterative methods because it is
based on the iterations indexed by n generating the
approximations to the root α
x_{n} are called the iterates.

Roadmap for the numerical method to finding root

Math 4329:
Numerical
Analysis
Chapter 03:
Bisection
Method
Natasha S.
Sharma, PhD

Each of the numerical approaches fit the following structure:
1 Start with an initial guess x_{0} and set an error tolerance $\varepsilon>0$. For instance, $\varepsilon=10^{-4}$.

2 Generate a sequence of approximations to α $x_{1}, x_{2}, \cdots, x_{n} \cdots$ such that $f\left(x_{n}\right)$ is getting closer to 0 . How close is good enough?

3

$$
\left|f\left(x_{n}\right)\right|<\varepsilon \text { and }\left|x_{n}-x_{n-1}\right|<\varepsilon
$$

4 Such methods are called iterative methods because it is based on the iterations indexed by n generating the approximations to the root α.
x_{n} are called the iterates.

Chaper 3: Rootfinding

Math 4329:
Numerical
Analysis
Chapter 03: Bisection Method

Goals

1 Explore numerical methods/algorithms to find approximate roots of the an equation $f(x)=0$

Chaper 3: Rootfinding

Math 4329:
Numerical
Analysis
Chapter 03:
Bisection
Method

Goals

1 Explore numerical methods/algorithms to find approximate roots of the an equation $f(x)=0$.
2 Design* our own numerical methods/algorithms to obtain an approximate root.

Chaper 3: Rootfinding

Math 4329:
Numerical
Analysis
Chapter 03:
Bisection
Method

Goals

1 Explore numerical methods/algorithms to find approximate roots of the an equation $f(x)=0$.
2 Design* our own numerical methods/algorithms to obtain an approximate root.

1 Bisection Method

Chaper 3: Rootfinding

Math 4329:
Numerical
Analysis
Chapter 03:
Bisection
Method

Goals

1 Explore numerical methods/algorithms to find approximate roots of the an equation $f(x)=0$.
2 Design* our own numerical methods/algorithms to obtain an approximate root.

1 Bisection Method
2 Newton's Method

Chaper 3: Rootfinding

Math 4329:
Numerical
Analysis
Chapter 03:
Bisection
Method

Goals

1 Explore numerical methods/algorithms to find approximate roots of the an equation $f(x)=0$.
2 Design* our own numerical methods/algorithms to obtain an approximate root.

1 Bisection Method
2 Newton's Method
3 Secant Method

Chaper 3: Rootfinding

Math 4329:
Numerical
Analysis
Chapter 03:
Bisection
Method

Goals

1 Explore numerical methods/algorithms to find approximate roots of the an equation $f(x)=0$.
2 Design* our own numerical methods/algorithms to obtain an approximate root.
1 Bisection Method
2 Newton's Method
3 Secant Method
4 General theory to design our own methods

Chaper 3: Rootfinding

Math 4329:
Numerical
Analysis
Chapter 03:
Bisection
Method

Goals

1 Explore numerical methods/algorithms to find approximate roots of the an equation $f(x)=0$.
2 Design* our own numerical methods/algorithms to obtain an approximate root.
1 Bisection Method
2 Newton's Method
3 Secant Method
4 General theory to design our own methods (* One-Point Iteration Methods)

Towards Bisection Method

Math 4329:
Numerical
Analysis
Chapter 03: Bisection Method

1 Estimate the approximate location of α. That is, find an interval $[a, b]$ containing a.

- Intermediate Value Theorem [Appendix A] If f is continuous on $[a, b]$ and $f(a) \cdot f(b)<0$ then f has atleast one zero in (a, b).

2 Repeatedly half the interval containing the root (based on the Intermediate Value Theorem).
That is, trap the root in shrinking interval by generating a sequence of iterates $\left\{c_{n}\right\}_{n \geq 0}: c_{1}, c_{2}, \cdots, c_{n} \cdots$ which live in $[a, b]$ and converge to α.

Towards Bisection Method

Math 4329:
Numerical
Analysis Chapter 03 Bisection Method

1 Estimate the approximate location of α. That is, find an interval $[a, b]$ containing α.

- Intermediate Value Theorem [Appendix A]:

If f is continuous on $[a, b]$ and $f(a) \cdot f(b)<0$ then f has atleast one zero in (a, b).I Repeatedly half the interval containing the root (based on the Intermediate Value Theorem) That is, trap the root in shrinking interval by generating a sequence of iterates $\left\{c_{n}\right\}_{n \geq 0}: c_{1}, c_{2}, \cdots, c_{n} \cdots$ which live in $[a, b]$ and converge to α.

Towards Bisection Method

Math 4329:
Numerical
Analysis
Chapter 03:
Bisection
Method
Natasha S.
Sharma, PhD

1 Estimate the approximate location of α. That is, find an interval $[a, b]$ containing α.

- Intermediate Value Theorem [Appendix A]:

If f is continuous on $[a, b]$ and $f(a) \cdot f(b)<0$ then f has atleast one zero in (a, b).

2 Repeatedly half the interval containing the root (based on the Intermediate Value Theorem).
That is, trap the root in shrinking interval by generating a sequence of iterates $\left\{c_{n}\right\}_{n \geq 0}: c_{1}, c_{2}, \cdots, c_{n} \cdots$ which live in $[a, b]$ and converge to α.

Towards Bisection Method

Math 4329:
Numerical
Analysis
Chapter 03: Bisection Method

1 Estimate the approximate location of α. That is, find an interval $[a, b]$ containing a.

- Intermediate Value Theorem [Appendix A] If f is continuous on $[a, b]$ and $f(a) \cdot f(b)<0$ then f has atleast one zero in (a, b).

2 Repeatedly half the interval containing the root (based on the Intermediate Value Theorem).
That is, trap the root in shrinking interval by generating a sequence of iterates $\left\{c_{n}\right\}_{n \geq 0}: c_{1}, c_{2}, \cdots, c_{n} \cdots$ which live in $[a, b]$ and converge to α.

Towards Bisection Method

Math 4329:
Numerical
Analysis Chapter 03 Bisection Method

1 Estimate the approximate location of α. That is, find an interval $[a, b]$ containing α.

- Intermediate Value Theorem [Appendix A]:

If f is continuous on $[a, b]$ and $f(a) \cdot f(b)<0$ then f has atleast one zero in (a, b).I Repeatedly half the interval containing the root (based on the Intermediate Value Theorem) That is, trap the root in shrinking interval by generating a sequence of iterates $\left\{c_{n}\right\}_{n \geq 0}: c_{1}, c_{2}, \cdots, c_{n} \cdots$ which live in $[a, b]$ and converge to α.

Towards Bisection Method

Math 4329:
Numerical
Analysis
Chapter 03:
Bisection
Method
Natasha S.
Sharma, PhD

1 Estimate the approximate location of α. That is, find an interval $[a, b]$ containing α.

- Intermediate Value Theorem [Appendix A]:

If f is continuous on $[a, b]$ and $f(a) \cdot f(b)<0$ then f has atleast one zero in (a, b).

2 Repeatedly half the interval containing the root (based on the Intermediate Value Theorem).
That is, trap the root in shrinking interval by generating a sequence of iterates $\left\{c_{n}\right\}_{n \geq 0}: c_{1}, c_{2}, \cdots, c_{n} \cdots$ which live in $[a, b]$ and converge to α.

Bisection Method

Math 4329:
Numerical
Analysis
Chapter 03:
Bisection
Method

Suppose that we can find $a<b$ such that $f(a) \cdot f(b)<0$. Let $\varepsilon>0$ denote the given error tolerance.
B1 Define $c=\frac{a+b}{2}$.
B2 If $b-c \leq \varepsilon$, then accept c as the root and stop.
B3 If $\operatorname{sign}[f(b)] \cdot \operatorname{sign}[f(c)] \leq 0$, then set $a=c$.
Otherwise, set $b=c$. Return to B1.
Remarks
1 The interval $[a, b]$ is shrunk reducing by $1 / 2$ for each loop of steps B1-B3.

2 The test B2 will be satisfied eventually, and with it the condition $|\alpha-c| \leq \varepsilon$ will be satisfied
[3 Note In B3 we test the $\operatorname{sign}[f(b)]: \operatorname{sign}[f(c)]$ in order to avoid the under or overflow due to multiplication of $f(b)$ and $f(c)$

Bisection Method

Math 4329:
Numerical
Analysis
Chapter 03:
Bisection
Method

Suppose that we can find $a<b$ such that $f(a) \cdot f(b)<0$. Let $\varepsilon>0$ denote the given error tolerance.
B1 Define $c=\frac{a+b}{2}$.
B2 If $b-c \leq \varepsilon$, then accept c as the root and stop.
B3 If $\operatorname{sign}[f(b)] \cdot \operatorname{sign}[f(c)] \leq 0$, then set $a=c$.
Otherwise, set $b=c$. Return to B1.

Remarks

1 The interval $[a, b]$ is shrunk reducing by $1 / 2$ for each loop of steps B1-B3.
2 The test B 2 will be satisfied eventually, and with it the condition $|\alpha-c| \leq \varepsilon$ will be satisfied.
3 Note In B3 we test the $\operatorname{sign}[f(b)] \cdot \operatorname{sign}[f(c)]$ in order to
avoid the under or overflow due to multiplication of $f(b)$
and $f(c)$

Bisection Method

Math 4329:
Numerical
Analysis
Chapter 03:
Bisection
Method

Suppose that we can find $a<b$ such that $f(a) \cdot f(b)<0$. Let $\varepsilon>0$ denote the given error tolerance.
B1 Define $c=\frac{a+b}{2}$.
B2 If $b-c \leq \varepsilon$, then accept c as the root and stop.
B3 If $\operatorname{sign}[f(b)] \cdot \operatorname{sign}[f(c)] \leq 0$, then set $a=c$.
Otherwise, set $b=c$. Return to B1.

Remarks

1 The interval $[a, b]$ is shrunk reducing by $1 / 2$ for each loop of steps B1-B3.
2 The test B 2 will be satisfied eventually, and with it the condition $|\alpha-c| \leq \varepsilon$ will be satisfied.
3 Note In B3 we test the $\operatorname{sign}[f(b)] \cdot \operatorname{sign}[f(c)]$ in order to avoid the under or overflow due to multiplication of $f(b)$ and $f(c)$.

Example

Math 4329:
Numerical Analysis Chapter 03: Bisection Method

Natasha S. Sharma, PhD

Note that we could be specifically interested in finding the smallest or the largest positive root or negative root.
Read the questions carefully about the kind of root we are looking for!
Example: Find the largest root of

$$
f(x)=x^{6}-x-1=0
$$

accurate within $\varepsilon=0.001$.
Location of the root α is in $[1,2]$.
Note: This interval need not be unique! [0,2] also works!
But the smaller the interval the faster the root finding method will work.

Example

Math 4329:
Numerical Analysis Chapter 03: Bisection Method

Natasha S. Sharma, PhD

Note that we could be specifically interested in finding the smallest or the largest positive root or negative root.
Read the questions carefully about the kind of root we are looking for!
Example: Find the largest root of

$$
f(x)=x^{6}-x-1=0
$$

accurate within $\varepsilon=0.001$.
Location of the root α is in $[1,2]$.
Note: This interval need not be unique! [0,2] also works!
But the smaller the interval the faster the root finding method will work.

Example

Math 4329:
Numerical Analysis Chapter 03: Bisection Method

Natasha S. Sharma, PhD

Note that we could be specifically interested in finding the smallest or the largest positive root or negative root.
Read the questions carefully about the kind of root we are looking for!
Example: Find the largest root of

$$
f(x)=x^{6}-x-1=0
$$

accurate within $\varepsilon=0.001$.
Location of the root α is in $[1,2]$.
Note: This interval need not be unique! [0,2] also works!
But the smaller the interval the faster the root finding method will work.

Example

Math 4329 :
Numerical Analysis Chapter 03: Bisection Method

Note that we could be specifically interested in finding the smallest or the largest positive root or negative root.

looking for!
 Example: Find the largest root of

accurate within $\varepsilon=0.001$
I ocation of the root α is in $[1,2]$
Note: This interval need not be unique! [0,2] also works!
But the smaller the interval the faster the root finding method
will work

Example

Math 4329
Numerical
Analysis
Chapter 03: Bisection
Method
Natasha S. Sharma, PhD

Note that we could be specifically interested in finding the smallest or the largest positive root or negative root. Read the questions carefully about the kind of root we are looking for!

Example: Find the largest root of

accurate within $\varepsilon=0.001$
Location of the root α is in $[1,2]$
Note: This interval need not be unic|ue! [0,2] also works!
But the smaller the interval the faster the root finding method
will work.

Example

Math 4329:
Numerical
Analysis
Chapter 03:
Bisection
Method
Natasha S. Sharma, PhD

Note that we could be specifically interested in finding the smallest or the largest positive root or negative root. Read the questions carefully about the kind of root we are looking for!
Example: Find the largest root of

$$
f(x)=x^{6}-x-1=0
$$

accurate within $\varepsilon=0.001$.
Location of the root α is in $[1,2]$
Note: This interval need not be unique! [0,2] also works!
But the smaller the interval the faster the root finding method
will work.

Example

Math 4329:
Numerical
Analysis
Chapter 03:
Bisection
Method
Natasha S. Sharma, PhD

Note that we could be specifically interested in finding the smallest or the largest positive root or negative root. Read the questions carefully about the kind of root we are looking for!
Example: Find the largest root of

$$
f(x)=x^{6}-x-1=0
$$

accurate within $\varepsilon=0.001$.
Location of the root α is in [1,2].
Note: This interval need not be unique! [0,2] also works!
But the smaller the interval the faster the root finding method
will work.

Example

Math 4329:
Numerical
Analysis
Chapter 03:
Bisection
Method
Natasha S.
Sharma, PhD

Note that we could be specifically interested in finding the smallest or the largest positive root or negative root.
Read the questions carefully about the kind of root we are looking for!
Example: Find the largest root of

$$
f(x)=x^{6}-x-1=0
$$

accurate within $\varepsilon=0.001$.
Location of the root α is in [1,2].
Note: This interval need not be unique! [0,2] also works!
But the smaller the interval the faster the root finding method will work.

Performance of the bisection Method

Math 4329:
Numerical
Analysis
Chapter 03:
Bisection
Method
Natasha S. Sharma, PhD

n	a	b	c	$\mathrm{b}-\mathrm{c}$	$\mathrm{f}(\mathrm{c})$
1	1	2	1.5	0.5	8.8906
2	1	1.5	1.25	0.25	1.5647
3	1	1.25	1.125	0.125	-0.0977
4	1.125	1.25	1.1875	0.0625	0.6167
5	1.125	1.1875	1.1562	0.0312	0.2333
6	1.125	1.1562	1.1406	0.0156	0.0616
7	1.125	1.1406	1.1328	0.0078	-0.0196
8	1.1328	1.1406	1.1367	0.0039	0.0206
9	1.1328	1.1367	1.1348	0.0020	0.0004
10	1.1328	1.1348	1.1338	0.00098	-0.0096

Remarks on the Performance

Math 4329:
Numerical Analysis Chapter 03: Bisection Method Sharma, PhD

1 Observe the shrinking of the interval $[a, b]$ as $n \rightarrow 10$. This shrinking is

- Dictated by the value of $f(c)$.
- This shrinking is by a factor of $1 / 2$ as illustrated by the column $b-c$.

2 Look at the initial rapid decay in the value of $f(c)$ as $n \rightarrow 10$

3 Numerically, one can also observe the impact of the round-off errors on the calculations.

Remarks on the Performance

Math 4329:
Numerical Analysis Chapter 03: Bisection Method

1 Observe the shrinking of the interval $[a, b]$ as $n \rightarrow 10$. This shrinking is

- Dictated by the value of $f(c)$.
- This shrinking is by a factor of $1 / 2$ as illustrated by the column $b-c$.

2 Look at the initial rapid decay in the value of $f(c)$ as $n \rightarrow 10$

3 Numerically, one can also observe the impact of the round-off errors on the calculations.

Remarks on the Performance

Math 4329:
Numerical Analysis Chapter 03: Bisection Method

1 Observe the shrinking of the interval $[a, b]$ as $n \rightarrow 10$. This shrinking is

- Dictated by the value of $f(c)$.
- This shrinking is by a factor of $1 / 2$ as illustrated by the column $b-c$.
2 Look at the initial rapid decay in the value of $f(c)$ as $n \rightarrow 10$

3 Numerically, one can also observe the impact of the round-off errors on the calculations.

Remarks on the Performance

Math 4329:
Numerical Analysis Chapter 03: Bisection Method

Natasha S. Sharma, PhD

1 Observe the shrinking of the interval $[a, b]$ as $n \rightarrow 10$. This shrinking is

- Dictated by the value of $f(c)$.
- This shrinking is by a factor of $1 / 2$ as illustrated by the column $b-c$.
2 Look at the initial rapid decay in the value of $f(c)$ as $n \rightarrow 10$:
- For $n=1$, the reduction is by a factor of 5.7 .
- For $n=2$, the reduction is by 16 .
- For $n=3$, the factor is 0.1584 , for $n=4$ the factor is 2.6 etc.

3 Numerically, one can also observe the impact of the round-off errors on the calculations.

Remarks on the Performance

Math 4329:
Numerical
Analysis
Chapter 03:
Bisection
Method
Natasha S. Sharma, PhD

1 Observe the shrinking of the interval $[a, b]$ as $n \rightarrow 10$. This shrinking is

- Dictated by the value of $f(c)$.
- This shrinking is by a factor of $1 / 2$ as illustrated by the column $b-c$.
2 Look at the initial rapid decay in the value of $f(c)$ as $n \rightarrow 10$:
- For $n=1$, the reduction is by a factor of 5.7.
- For $n=2$, the reduction is by 16 .
- For $n=3$, the factor is 0.1584 , for $n=4$ the factor is 2.6 etc.

3 Numerically, one can also observe the impact of the round-off errors on the calculations.

Remarks on the Performance

Math 4329:
Numerical
Analysis
Chapter 03:
Bisection
Method
Natasha S. Sharma, PhD

1 Observe the shrinking of the interval $[a, b]$ as $n \rightarrow 10$. This shrinking is

- Dictated by the value of $f(c)$.
- This shrinking is by a factor of $1 / 2$ as illustrated by the column $b-c$.
2 Look at the initial rapid decay in the value of $f(c)$ as $n \rightarrow 10$:
- For $n=1$, the reduction is by a factor of 5.7.
- For $n=2$, the reduction is by 16 .

3 Numerically, one can also observe the impact of the round-off errors on the calculations.

Remarks on the Performance

Math 4329:
Numerical
Analysis
Chapter 03:
Bisection
Method
Natasha S. Sharma, PhD

1 Observe the shrinking of the interval $[a, b]$ as $n \rightarrow 10$. This shrinking is

- Dictated by the value of $f(c)$.
- This shrinking is by a factor of $1 / 2$ as illustrated by the column $b-c$.
2 Look at the initial rapid decay in the value of $f(c)$ as $n \rightarrow 10$:
- For $n=1$, the reduction is by a factor of 5.7.
- For $n=2$, the reduction is by 16 .
- For $n=3$, the factor is 0.1584 , for $n=4$ the factor is 2.6 etc.

3 Numerically, one can also observe the impact of the round-off errors on the calculations.

Remarks on the Performance

Math 4329:
Numerical
Analysis
Chapter 03:
Bisection
Method
Natasha S. Sharma, PhD

1 Observe the shrinking of the interval $[a, b]$ as $n \rightarrow 10$. This shrinking is

- Dictated by the value of $f(c)$.
- This shrinking is by a factor of $1 / 2$ as illustrated by the column $b-c$.
2 Look at the initial rapid decay in the value of $f(c)$ as $n \rightarrow 10$:
- For $n=1$, the reduction is by a factor of 5.7.
- For $n=2$, the reduction is by 16 .
- For $n=3$, the factor is 0.1584 , for $n=4$ the factor is 2.6 etc.

3 Numerically, one can also observe the impact of the round-off errors on the calculations.

Error Bounds

Math 4329:
Numerical
Analysis
Chapter 03:
Bisection
Method

We want to know how many loops of the Bisection Method need to run to achieve a $\varepsilon>0$ level of accuracy? On the next slide, we present the theory behind determining n, the number of iterations needed to achieve a ε accuracy,

Error Bounds

Math 4329:
Numerical
Analysis
Chapter 03:
Bisection
Method

Let a_{n}, b_{n}, c_{n} denote the computed values of a, b, c at the $n^{\text {th }}$ iteration. We noticed the following relationship:

$$
b_{n+1}-a_{n+1}=\frac{1}{2}\left(b_{n}-a_{n}\right), \quad n \geq 1
$$

and

$$
b_{n}-a_{n}=\frac{1}{2^{n-1}}(b-a)
$$

where $b-a$ denotes the length of the initial interval satisfying $f(a) \cdot f(b)<0$.
Since the root α is trapped in the shrinking interval $\left[a_{n}, c_{n}\right.$] or [c_{n}, b_{n}], we have:

$$
\left|\alpha-c_{n}\right| \leq c_{n}-a_{n}=b_{n}-c_{n}=\frac{1}{2}\left(b_{n}-a_{n}\right) \leq \frac{1}{2}\left(\frac{1}{2^{n-1}}(b-a)\right)
$$

Math 4329:
Numerical Analysis Chapter 03: Bisection Method

$$
\begin{aligned}
\left|\alpha-c_{n}\right| \leq & \cdots \leq \frac{1}{2}\left(\frac{1}{2^{n-1}}(b-a)\right) \\
& =\frac{1}{2^{n}}(b-a)
\end{aligned}
$$

As $n \rightarrow \infty$, the iterates $c_{n} \rightarrow \alpha$.

The question we are interested in answering:

 How fast will we be within ε-distance from the root α ?Math 4329:
Numerical Analysis Chapter 03: Bisection Method

$$
\begin{aligned}
\left|\alpha-c_{n}\right| \leq & \cdots \leq \frac{1}{2}\left(\frac{1}{2^{n-1}}(b-a)\right) \\
& =\frac{1}{2^{n}}(b-a)
\end{aligned}
$$

As $n \rightarrow \infty$, the iterates $c_{n} \rightarrow \alpha$.
The question we are interested in answering: How fast will we be within ε-distance from the root α ?

Math 4329:
Numerical
Analysis
Chapter 03:
Bisection
Method
Natasha S. Sharma, PhD

That is, for what n will the following error bound hold? Keep in mind, this is without any a-priori information about α and without calculating all the iterations c_{n} !

$$
\begin{gathered}
\left|\alpha-c_{n}\right| \leq \varepsilon=10^{-3} \\
\left|\alpha-c_{n}\right| \leq \cdots \leq \frac{1}{2}\left(\frac{1}{2^{n-1}}(b-a)\right) \\
=\frac{1}{2^{n}}(b-a) \\
\leq 0.001
\end{gathered}
$$

Find n such that $n \geq \frac{\log \left(\frac{b-a}{\varepsilon}\right)}{\log 2}$ holds that is equivalent to

$$
n \geq \frac{\log \left(\frac{1}{0.001}\right)}{\log 2} \approx 9.97
$$

Exercise

Math 4329: Numerical Analysis Chapter 03: Bisection Method

Repeat the above exercise with $f(x)=x-\cos (x)$, (x measured in radians).

