

Natasha S. Sharma, PhD

Numerical Analysis: Solutions of System of Linear Equation

Natasha S. Sharma, PhD

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Mathematical Question we are interested in answering numerically

Numerical Analysis: Solutions of System of Linear Equation

Natasha S. Sharma, PhD How to solve the following linear system for x

Ax = b?

where A is an $n \times n$ invertible matrix and b is vector of length n.

Notation: x^* denote the true solution to Ax = b.

- Traditional Approaches:
 - **1** Gaussian Elimination with backward substitution/ row-echelon form.
 - 2 *LU* Decomposition of *A* and solving two smaller linear systems.
- Goal: Numerically approximate x* by {x_n}_{n≥1} based on an initial guess x₀ such that

$$x_n \rightarrow x^*$$
 as $n \rightarrow \infty$.

Natasha S. Sharma, PhD

- Gaussian Elimination and LU decomposition provide the exact solution under the assumption of infinite precision (an impractical assumption when solving large systems). We need to be able to design a method that takes into consideration this issue (Residual Correction Method).
- 2. Computationally demanding to use direct methods to solve systems with $n \approx 10^6$ iterative methods need less memory for each solve.
- 3. Ill-conditioned systems that is, sensitivity of the solution to Ax = b, to a change in b.

Algorithmns for solving linear systems

Numerical Analysis: Solutions of System of Linear Equation

Natasha S. Sharma, PhD

Direct Methods: Gaussian Elimination, *LU* decomposition.

They involve one large computational step.

Iterative Methods: Residual Correction Method, Jacobi Method Gauss-Seidel Method (scope of this course). Given error tolerance ε and an initial guess vector x₀, these methods approach the solution gradually.

The big advantage of the iterative methods their memory usage, which is significantly less than a direct solver for the same sized problems.

Iterative Methods: Residual Correction Mehtod

Numerical Analysis: Solutions of System of Linear Equation

Natasha S. Sharma, PhD Motivation: To overcome the unavoidable round-off errors in solving linear systems. Consider:

$$x - \frac{800}{801}y = 10 - x + y = 50.$$

Recall, the exact solution is $\mathbf{x}^* = [48010, 48060]^T$. Assuming $800/801 \approx 0.998751560549313$,

the computed solution $x^{(0)}$ using three digits of significance is inaccurate.

Goal: **Predict** the error in the computed solution and **correct** the error.

Algorithmns for solving linear systems

Numerical Analysis: Solutions of System of Linear Equation

Natasha S. Sharma, PhD

Definition (Residual)

Residual

$$r = b - A\hat{x}$$

where \hat{x} is the imprecise computed solution.

Definition (Error)

Error

$$\hat{e} = x^* - \hat{x}$$

where x^* is the exact solution and \hat{x} is the imprecise computed solution.

Residual Correction Method

Numerical Analysis: Solutions of System of Linear Equation

Natasha S. Sharma, PhD Relation between residual and error

$$r = b - A\hat{x} = Ax^* - A\hat{x} = A(x^* - \hat{x}) = A\hat{e}.$$

This motivates the definition of the residual correction method where the corrected solution say x^c is given by

$$x^{c} = \hat{x} + \underbrace{\hat{e}}_{x^{*} - \hat{x}}$$

Residual Correction Method

Numerical Analysis: Solutions of System of Linear Equation

Natasha S. Sharma, PhD Input: $x^0 = \hat{x}$ obtained from using Gauss Elimination to solve Ax = b. Tolerance $\varepsilon > 0$ Let $r^0 = b - Ax^0$ Solve for e^0 satisfying $Ae^0 = r^0$. while $|e^n| > \varepsilon$ do $\begin{vmatrix} x^{n+1} = x^n + e^n \\ \text{Let } r^{n+1} = b - Ax^{n+1}. \\ \text{Solve for } e^{n+1} \text{ satisfying } Ae^{n+1} = r^{n+1}. \end{vmatrix}$ end

▲日▼ ▲□▼ ▲日▼ ▲日▼ □ ● ○○○

Natasha S. Sharma, PhD

Example

Using a computer with four-digit precision, employing Gaussian elimination solve the system

$$\begin{aligned} x_1 + 0.5x_2 + 0.3333x_3 &= 1\\ 0.5x_1 + 0.3333x_2 + 0.25x_3 &= 0\\ 0.3333x_1 + 0.25x_2 + 0.2x_3 &= 0. \end{aligned}$$

yields the solution $x^0 = [8.968, -35.77, 29.77]^T$.

Natasha S. Sharma, PhD

Following the residual correction algorithm, taking $\varepsilon = 10^{-4}$ and given $x^0 = [8.968, -35.77, 29.77]^T$. $r^{0} = [-0.005341, -0.004359, -.0005344]^{T}$ $e^0 = [0.09216, -0.5442, 0.5239]^T$ $x^{1} = [9.060, 36.31, 30.29]^{T}$ $r^{1} = [-0.000657, -0.000377, -.0000198]^{T}$ $e^1 = [0.001707, -0.013, 0.0124]^T$ $x^{1} = [9.062, -36.32, 30.30]^{T}$

Jacobi Method / Method of Simultaneous Replacements

Numerical Analysis: Solutions of System of Linear Equation

Natasha S. Sharma, PhD

Consider the following system

$$9x_1 + x_2 + x_3 = 10 \tag{1}$$

$$2x_1 + 10x_2 + 3x_3 = 19 \tag{2}$$

$$3x_1 + 4x_2 + 11x_3 = 0 \tag{3}$$

Given an initial guess $\mathbf{x}^{(0)} = [x_1^0, x_2^0, x_3^0]^T$, we construct a sequence based on the formula:

$$\begin{aligned} x_1^{(k+1)} &= \frac{10 - x_2^{(k)} + x_3^{(k)}}{9} \\ x_2^{(k+1)} &= \frac{19 - 2x_1^{(k)} - 3x_3^{(k)}}{10} \\ x_3^{(k+1)} &= \frac{-(3x_1^{(k)} + 4x_2^{(k)})}{11}. \end{aligned}$$

Performance of Jacobi Iteration

Numerical Analysis: Solutions of System of Linear Equation

Natasha S. Sharma, PhD

n	$x_1^{(k)}$	$x_2^{(k)}$	x3 ^(k)	Error	Ratio
0	0	0	0	2e+0	-
1	1.1111	1.9	0	1e+0	0.5
2	0.9	1.6778	-0.9939	3.22e-1	0.322
3	1.0351	2.0182	-0.8556	1.44e-1	0.448
4	0.9819	1.9496	-1.0162	-5.04e-2	0.349
5	1.0074	2.0085	-0.9768	2.32e-2	0.462
:	:	:	:	:	
10	0.9999	1.9997	-1.003	2.8e-4	0.382
:	:	÷	:	:	:
30	1	2	-1	3.011e-11	0.447
31	1	2	-1	1.35e-11	0.447

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Gauss-Seidel Method/ Method of Successive Replacements

Numerical Analysis: Solutions of System of Linear Equation

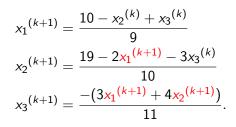
Natasha S. Sharma, PhD For the following system,

$$9x_1 + x_2 + x_3 = 10$$

$$2x_1 + 10x_2 + 3x_3 = 19$$

$$3x_1 + 4x_2 + 11x_3 = 0$$

Given an initial guess $\mathbf{x}^{(0)} = [x_1^0, x_2^0, x_3^0]^T$, we construct a sequence based on the Gauss-Seidel formula:



Performance of Gauss Seidel Iteration

Numerical Analysis: Solutions of System of Linear Equation

Natasha S. Sharma, PhD

n	$x_1^{(k)}$	$x_2^{(k)}$	$x_{3}^{(k)}$	Error	Ratio
0	0	0	0	2e+0	_
1	1.1111	1.6778	-0.9131	3.22e-1	0.161
2	1.0262	1.9687	-0.9958	3.22e-1	0.097
3	1.003	1.9981	-1.0001	1.44e-1	0.096
4	1.002	2.000	-1.00001	-2.24e-4	0.074
5	1	2	-1	1.65e-5	0.074
6	1	2	-1	2.58e-6	0.155

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

General Schema: Towards Error Analysis

Numerical Analysis: Solutions of System of Linear Equation

Natasha S. Sharma, PhD In order to examine the error analysis, we need to express the two iterative methods in a more compact form. This can be achieved by expressing the formulas for Jacobi and Gauss Seidel using vector-matrix format.

Theorem (Vector-Matrix Format)

Every linear system

$$Ax = b$$

can be expressed in the form

$$Nx = b + Px$$
, $A = N - P$,

where N is an nonsingular (invertible) matrix. Furthermore, any iteration method can be described as:

$$N\mathbf{x}^{(k+1)} = b + P\mathbf{x}^k, \quad k = 0, 1, \cdots$$
(4)

Work Out Example

Numerical Analysis: Solutions of System of Linear Equation

Natasha S. Sharma, PhD

Example

Write the Jacobi method applied to the linear system (1)-(3) using the vector-matrix format (4):

$$N\mathbf{x}^{(k+1)} = b + P\mathbf{x}^k, \quad b = [10, 19, 0]^T.$$

$$x_1^{(k+1)} = \frac{10 - x_2^{(k)} + x_3^{(k)}}{9}$$
$$x_2^{(k+1)} = \frac{19 - 2x_1^{(k)} - 3x_3^{(k)}}{10}$$
$$x_3^{(k+1)} = \frac{-(3x_1^{(k)} + 4x_2^{(k)} + 11)}{11}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Solution

Numerical Analysis: Solutions of System of Linear Equation

Natasha S. Sharma, PhD 1. Multiply first equation by 9, second by 10 and third by 11.

$$9x_1^{(k+1)} = 10 - x_2^{(k)} + x_3^{(k)}$$

$$10x_2^{(k+1)} = 19 - 2x_1^{(k)} - 3x_3^{(k)}$$

$$11x_3^{(k+1)} = 0 - (3x_1^{(k)} + 4x_2^{(k)}).$$

2. Recall we want to express the formula in the form $N\mathbf{x}^{(k+1)} = b + P\mathbf{x}^k$, $b = [10, 19, 0]^T$. We already have b.

We now need to derive the matrices N and P.

3. Obtain N first.

$$N\mathbf{x}^{(k+1)} = \begin{bmatrix} 9 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 11 \end{bmatrix} \begin{bmatrix} x_1^{(k+1)} \\ x_2^{(k+1)} \\ x_3^{(k+1)} \end{bmatrix} = \begin{bmatrix} 9x_1^{(k+1)} \\ 10x_2^{(k+1)} \\ 11x_3^{(k+1)} \end{bmatrix}$$

LHS of the linear system above!

Solution

Numerical Analysis: Solutions of System of Linear Equation

Natasha S. Sharma, PhD

$P = \begin{bmatrix} 0 & -1 & 1 \\ -2 & 0 & -3 \\ -3 & 4 & 0 \end{bmatrix}, \quad N = \begin{bmatrix} 9 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 11 \end{bmatrix}.$

Observations

- For the Jacobi iterative method, the matrices N^J and P^J stay unchanged!
- Notice the zero diagonal entries for *P*.
- The diagonal entries of N and A are the same!
- Easy way to obtain P is

$$P = N - A$$

▲□▼▲□▼▲□▼▲□▼ □ ● ●

To summarize...

Numerical Analysis: Solutions of System of Linear Equation

Natasha S. Sharma, PhD Since our next task is to extract the N and P characterizing the Gauss Seidel Method, we let N^J and P^J to denote the matrices charactering the vector-matrix format (4) for the Jacobi Iteration.

That is, For Jacobi Method solving Ax = b,

$$N^{J}\mathbf{x}^{(k+1)} = b + P^{J}\mathbf{x}^{(k)}, \ k = 1, 2, \cdots$$

extract the diagonal of A and denote it by N^J,
 obtain P^J using P^J = N^J - A.

Example (Harder than the Jacobi matrices!)

Numerical Analysis: Solutions of System of Linear Equation

Natasha S. Sharma, PhD

Write the Gauss Seidel method applied to the linear system (1)-(3) using the vector-matrix format (4):

$$N^{GS}\mathbf{x}^{(k+1)} = b + P^{GS}\mathbf{x}^{k}, \quad b = [10, 19, 0]^{T}.$$

Recall,

Example

$$x_1^{(k+1)} = \frac{10 - x_2^{(k)} + x_3^{(k)}}{9}$$
$$x_2^{(k+1)} = \frac{19 - 2x_1^{(k+1)} - 3x_3^{(k)}}{10}$$
$$x_3^{(k+1)} = \frac{-(3x_1^{(k+1)} + 4x_2^{(k+1)})}{11}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Solution

Numerical Analysis: Solutions of System of Linear Equation

Natasha S. Sharma, PhD We start in the usual way of multiplying the first equation by 9, second equation by 10 and third by 11 to obtain

$$9x_1^{(k+1)} = 10 - x_2^{(k)} + x_3^{(k)}$$

$$10x_2^{(k+1)} = 19 - 2x_1^{(k+1)} - 3x_3^{(k)}$$

$$11x_3^{(k+1)} = -(3x_1^{(k+1)} + 4x_2^{(k+1)}).$$

Remember all terms with superscript k + 1 belong to the LHS thus, rearranging gives us

$$9x_1^{(k+1)} = 10 - x_2^{(k)} + x_3^{(k)}$$
$$2x_1^{(k+1)} + 10x_2^{(k+1)} = 19 - 3x_3^{(k)}$$
$$3x_1^{(k+1)} - 4x_2^{(k+1)} + 11x_3^{(k+1)} = 0.$$

We already have $b = [10, 19, 0]^T$. What is $N^{GS}_{a} and P^{GS}_{a}$?

Natasha S. Sharma, PhD

$$9x_1^{(k+1)} = 10 - x_2^{(k)} + x_3^{(k)}$$
$$2x_1^{(k+1)} + 10x_2^{(k+1)} = 19 - 3x_3^{(k)}$$
$$3x_1^{(k+1)} - 4x_2^{(k+1)} + 11x_3^{(k+1)} = 0.$$

It is easier to obtain P^{GS} in this case!

$$P^{GS} = \begin{bmatrix} 0 & -1 & -1 \\ 0 & 0 & -3 \\ 0 & 0 & 0 \end{bmatrix},$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

since
$$P^{GS} \mathbf{x}^{(k)} = \begin{bmatrix} -x_2^{(k)} + x_3^{(k)} \\ -3x_3^{(k)} \\ 0 \end{bmatrix}$$
 (verify!)

Natasha S. Sharma, PhD

$$N^{GS} = P^{GS} + A = \begin{bmatrix} 0 & -1 & -1 \\ 0 & 0 & -3 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 9 & 1 & 1 \\ 2 & 10 & 3 \\ 3 & 4 & 11 \end{bmatrix} = \underbrace{\begin{bmatrix} 9 & 0 & 0 \\ 2 & 10 & 0 \\ 3 & 4 & 11 \end{bmatrix}}_{\text{Lower half of A!}}$$

Observations

- For the Gauss Seidel iterative method too, the matrices N^J and P^J stay unchanged!
- Notice the zero diagonal entries for P^{GS} too! Common feature with Jacobi matrices!
- The diagonal entries of N^{GS} and A are the same! Common feature with Jacobi matrices!

Convergence Analysis

Numerical Analysis: Solutions of System of Linear Equation

Natasha S. Sharma, PhD

Theorem (Convergence Condition)

For any iterative method

$$N\mathbf{x}^{(k+1)} = b + P\mathbf{x}^{(k)},$$

to solve Ax = b, the condition for convergence is

$$||N^{-1}P|| < 1$$

for all choices of initial guess x^0 and b!

Observations

Numerical Analysis: Solutions of System of Linear Equation

Natasha S. Sharma, PhD For Jacobi method, this condition is equivalent to requiring

$$\sum_{j=1,j\neq i}^n |a_{ij}| < |a_{ii}|, \quad i=1,\cdots,n$$

A matrix $A = (a_{ij})_{i,j=1}^n$ satisfying the above condition is called diagonally dominant.