Numerical Analysis: Solutions of System of Linear Equation

Natasha S. Sharma, PhD

Mathematical Question we are interested in answering numerically

Numerical
Analysis:
Solutions of
System of
Linear
Equation
Natasha S. Sharma, PhD

■ How to solve the following linear system for x

$$
A x=b ?
$$

where A is an $n \times n$ invertible matrix and b is vector of length n.
Notation: x^{*} denote the true solution to $A x=b$.

- Traditional Approaches:

1 Gaussian Elimination with backward substitution/ row-echelon form.
$2 L U$ Decomposition of A and solving two smaller linear systems.

- Goal: Numerically approximate x^{*} by $\left\{x_{n}\right\}_{n \geq 1}$ based on an initial guess x_{0} such that

$$
x_{n} \rightarrow x^{*} \text { as } n \rightarrow \infty .
$$

Why do we need to approximate the solution?

Numerical
Analysis:
Solutions of
System of
Linear
Equation
Natasha S. Sharma, PhD

1. Gaussian Elimination and $L U$ decomposition provide the exact solution under the assumption of infinite precision (an impractical assumption when solving large systems). We need to be able to design a method that takes into consideration this issue (Residual Correction Method).
2. Computationally demanding to use direct methods to solve systems with $n \approx 10^{6}$ iterative methods need less memory for each solve.
3. III-conditioned systems that is, sensitivity of the solution to $A x=b$, to a change in b.

Algorithmns for solving linear systems

Numerical
Analysis:
Solutions of
System of
Linear
Equation
Natasha S. Sharma, PhD

1 Direct Methods: Gaussian Elimination, LU decomposition.
They involve one large computational step.
2 Iterative Methods: Residual Correction Method, Jacobi Method Gauss-Seidel Method (scope of this course). Given error tolerance ε and an initial guess vector x_{0}, these methods approach the solution gradually.

The big advantage of the iterative methods their memory usage, which is significantly less than a direct solver for the same sized problems.

Iterative Methods: Residual Correction Mehtod

Numerical
Analysis:
Solutions of
System of
Linear
Equation
Natasha S. Sharma, PhD

Motivation: To overcome the unavoidable round-off errors in solving linear systems.
Consider:

$$
\begin{aligned}
x-\frac{800}{801} y & =10 \\
-x+y & =50
\end{aligned}
$$

Recall, the exact solution is $\mathbf{x}^{*}=[48010,48060]^{T}$. Assuming 800/801 $\approx 0.998751560549313$, the computed solution $x^{(0)}$ using three digits of significance is inaccurate.
Goal: Predict the error in the computed solution and correct the error.

Algorithmns for solving linear systems

Numerical
Analysis: Solutions of System of Linear Equation

Natasha S. Sharma, PhD

Definition (Residual)

Residual

$$
r=b-A \hat{x}
$$

where \hat{x} is the imprecise computed solution.

Definition (Error)

Error

$$
\hat{e}=x^{*}-\hat{x}
$$

where x^{*} is the exact solution and \hat{x} is the imprecise computed solution.

Residual Correction Method

Numerical
Analysis: Solutions of System of Linear
Equation
Natasha S. Sharma, PhD

Relation between residual and error

$$
r=b-A \hat{x}=A x^{*}-A \hat{x}=A\left(x^{*}-\hat{x}\right)=A \hat{e} .
$$

This motivates the definition of the residual correction method where the corrected solution say x^{c} is given by

$$
x^{c}=\hat{x}+\underbrace{\hat{e}}_{x^{*}-\hat{x}}
$$

Residual Correction Method

Numerical
Analysis: Solutions of
System of
Linear
Equation
Natasha S. Sharma, PhD

Input: $x^{0}=\hat{x}$ obtained from using Gauss Elimination to solve $A x=b$.
Tolerance $\varepsilon>0$
Let $r^{0}=b-A x^{0}$
Solve for e^{0} satisfying $A e^{0}=r^{0}$.
while $\left|e^{n}\right|>\varepsilon$ do
$x^{n+1}=x^{n}+e^{n}$
Let $r^{n+1}=b-A x^{n+1}$.
Solve for e^{n+1} satisfying $A e^{n+1}=r^{n+1}$.
end

Numerical
Analysis: Solutions of
System of Linear
Equation
Natasha S. Sharma, PhD

Example

Using a computer with four-digit precision, employing Gaussian elimination solve the system

$$
\begin{aligned}
x_{1}+0.5 x_{2}+0.3333 x_{3} & =1 \\
0.5 x_{1}+0.3333 x_{2}+0.25 x_{3} & =0 \\
0.3333 x_{1}+0.25 x_{2}+0.2 x_{3} & =0 .
\end{aligned}
$$

yields the solution $x^{0}=[8.968,-35.77,29.77]^{T}$.

Numerical
Analysis: Solutions of
System of
Linear
Equation
Natasha S. Sharma, PhD

Following the residual correction algorithm, taking $\varepsilon=10^{-4}$ and given $x^{0}=[8.968,-35.77,29.77]^{T}$,

$$
\begin{array}{r}
r^{0}=[-0.005341,-0.004359,-.0005344]^{T} \\
e^{0}=[0.09216,-0.5442,0.5239]^{T} \\
x^{1}=[9.060,36.31,30.29]^{T} \\
r^{1}=[-0.000657,-0.000377,-.0000198]^{T} \\
e^{1}=[0.001707,-0.013,0.0124]^{T} \\
x^{1}=[9.062,-36.32,30.30]^{T}
\end{array}
$$

Jacobi Method/ Method of Simultaneous Replacements

Numerical
Analysis: Solutions of System of Linear Equation

Natasha S. Sharma, PhD

Consider the following system

$$
\begin{align*}
9 x_{1}+x_{2}+x_{3} & =10 \tag{1}\\
2 x_{1}+10 x_{2}+3 x_{3} & =19 \tag{2}\\
3 x_{1}+4 x_{2}+11 x_{3} & =0 \tag{3}
\end{align*}
$$

Given an initial guess $\mathbf{x}^{(0)}=\left[x_{1}^{0}, x_{2}^{0}, x_{3}^{0}\right]^{T}$, we construct a sequence based on the formula:

$$
\begin{aligned}
& x_{1}^{(k+1)}=\frac{10-x_{2}^{(k)}+x_{3}(k)}{9} \\
& x_{2}^{(k+1)}=\frac{19-2 x_{1}^{(k)}-3 x_{3}^{(k)}}{10} \\
& x_{3}{ }^{(k+1)}=\frac{-\left(3 x_{1}{ }^{(k)}+4 x_{2}^{(k)}\right)}{11} .
\end{aligned}
$$

Performance of Jacobi Iteration

Numerical
Analysis:
Solutions of
System of
Linear
Equation
Natasha S. Sharma, PhD

n	$x_{1}{ }^{(k)}$	$x_{2}{ }^{(k)}$	$x_{3}{ }^{(k)}$	Error	Ratio
0	0	0	0	$2 \mathrm{e}+0$	-
1	1.1111	1.9	0	$1 \mathrm{e}+0$	0.5
2	0.9	1.6778	-0.9939	$3.22 \mathrm{e}-1$	0.322
3	1.0351	2.0182	-0.8556	$1.44 \mathrm{e}-1$	0.448
4	0.9819	1.9496	-1.0162	$-5.04 \mathrm{e}-2$	0.349
5	1.0074	2.0085	-0.9768	$2.32 \mathrm{e}-2$	0.462
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots
10	0.9999	1.9997	-1.003	$2.8 \mathrm{e}-4$	0.382
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots
30	1	2	-1	$3.011 \mathrm{e}-11$	0.447
31	1	2	-1	$1.35 \mathrm{e}-11$	0.447

Gauss-Seidel Method/ Method of Successive Replacements

Numerical
Analysis: Solutions of System of Linear Equation

Natasha S. Sharma, PhD

For the following system,

$$
\begin{aligned}
9 x_{1}+x_{2}+x_{3} & =10 \\
2 x_{1}+10 x_{2}+3 x_{3} & =19 \\
3 x_{1}+4 x_{2}+11 x_{3} & =0
\end{aligned}
$$

Given an initial guess $\mathbf{x}^{(0)}=\left[x_{1}^{0}, x_{2}^{0}, x_{3}^{0}\right]^{T}$, we construct a sequence based on the Gauss-Seidel formula:

$$
\begin{aligned}
x_{1}^{(k+1)} & =\frac{10-x_{2}^{(k)}+x_{3}^{(k)}}{9} \\
x_{2}^{(k+1)} & =\frac{19-2 x_{1}^{(k+1)}-3 x_{3}^{(k)}}{10} \\
x_{3}^{(k+1)} & =\frac{-\left(3 x_{1}^{(k+1)}+4 x_{2}^{(k+1)}\right)}{11}
\end{aligned}
$$

Performance of Gauss Seidel Iteration

Numerical
Analysis:
Solutions of
System of
Linear
Equation
Natasha S. Sharma, PhD

n	$x_{1}{ }^{(k)}$	$x_{2}{ }^{(k)}$	$x_{3}{ }^{(k)}$	Error	Ratio
0	0	0	0	$2 \mathrm{e}+0$	-
1	1.1111	1.6778	-0.9131	$3.22 \mathrm{e}-1$	0.161
2	1.0262	1.9687	-0.9958	$3.22 \mathrm{e}-1$	0.097
3	1.003	1.9981	-1.0001	$1.44 \mathrm{e}-1$	0.096
4	1.002	2.000	-1.00001	$-2.24 \mathrm{e}-4$	0.074
5	1	2	-1	$1.65 \mathrm{e}-5$	0.074
6	1	2	-1	$2.58 \mathrm{e}-6$	0.155

General Schema: Towards Error Analysis

Numerical
Analysis:
Solutions of
System of
Linear
Equation
Natasha S. Sharma, PhD

In order to examine the error analysis, we need to express the two iterative methods in a more compact form.
This can be achieved by expressing the formulas for Jacobi and Gauss Seidel using vector-matrix format.

Theorem (Vector-Matrix Format)

Every linear system

$$
A x=b
$$

can be expressed in the form

$$
N x=b+P x, \quad A=N-P
$$

where N is an nonsingular (invertible) matrix. Furthermore, any iteration method can be described as:

$$
\begin{equation*}
N \mathbf{x}^{(k+1)}=b+P \mathbf{x}^{k}, \quad k=0,1, \cdots \tag{4}
\end{equation*}
$$

Work Out Example

Numerical
Analysis:
Solutions of
System of
Linear
Equation
Natasha S. Sharma, PhD

Example

Write the Jacobi method applied to the linear system (1)-(3) using the vector-matrix format (4):

$$
\begin{aligned}
& N \mathbf{x}^{(k+1)}=b+P \mathbf{x}^{k}, \quad b=[10,19,0]^{T} . \\
& x_{1}^{(k+1)}=\frac{10-x_{2}^{(k)}+x_{3}^{(k)}}{9} \\
& x_{2}^{(k+1)}=\frac{19-2 x_{1}^{(k)}-3 x_{3}^{(k)}}{10} \\
& x_{3}^{(k+1)}=\frac{-\left(3 x_{1}^{(k)}+4 x_{2}^{(k)}+11\right)}{11} .
\end{aligned}
$$

Solution

Numerical
Analysis: Solutions of System of
Linear
Equation
Natasha S. Sharma, PhD

1. Multiply first equation by 9 , second by 10 and third by 11 .

$$
\begin{aligned}
9 x_{1}^{(k+1)} & =10-x_{2}^{(k)}+x_{3}^{(k)} \\
10 x_{2}^{(k+1)} & =19-2 x_{1}^{(k)}-3 x_{3}^{(k)} \\
11 x_{3}{ }^{(k+1)} & =0-\left(3 x_{1}^{(k)}+4 x_{2}^{(k)}\right)
\end{aligned}
$$

2. Recall we want to express the formula in the form $N \mathbf{x}^{(k+1)}=b+P \mathbf{x}^{k}, \quad b=[10,19,0]^{T}$.
We already have b.
We now need to derive the matrices N and P.
3. Obtain N first.

$$
N \mathbf{x}^{(k+1)}=\left[\begin{array}{ccc}
9 & 0 & 0 \\
0 & 10 & 0 \\
0 & 0 & 11
\end{array}\right]\left[\begin{array}{l}
x_{1}(k+1) \\
x_{2}(k+1) \\
x_{3}{ }^{(k+1)}
\end{array}\right]=\left[\begin{array}{c}
9 x_{1}(k+1) \\
10 x_{2}{ }^{(k+1)} \\
11 x_{3}{ }^{(k+1)}
\end{array}\right]
$$

LHS of the linear system above!

Solution

Numerical
Analysis:
Solutions of
System of
Linear
Equation
Natasha S. Sharma, PhD

$$
P=\left[\begin{array}{ccc}
0 & -1 & 1 \\
-2 & 0 & -3 \\
-3 & 4 & 0
\end{array}\right], \quad N=\left[\begin{array}{ccc}
9 & 0 & 0 \\
0 & 10 & 0 \\
0 & 0 & 11
\end{array}\right]
$$

Observations

- For the Jacobi iterative method, the matrices N^{J} and P^{J} stay unchanged!
■ Notice the zero diagonal entries for P.
- The diagonal entries of N and A are the same!
- Easy way to obtain P is

$$
P=N-A
$$

To summarize...

Numerical
Analysis:
Solutions of
System of
Linear
Equation
Natasha S.
Sharma, PhD

Since our next task is to extract the N and P characterizing the Gauss Seidel Method, we let N^{J} and P^{J} to denote the matrices charactering the vector-matrix format (4) for the Jacobi Iteration.
That is, For Jacobi Method solving $A x=b$,

$$
N^{J} \mathbf{x}^{(k+1)}=b+P^{J} \mathbf{x}^{(k)}, k=1,2, \cdots
$$

1 extract the diagonal of A and denote it by N^{J},
2 obtain P^{J} using $P^{J}=N^{J}-A$.

Example (Harder than the Jacobi matrices!)

Numerical
Analysis:
Solutions of
System of
Linear
Equation
Natasha S. Sharma, PhD

Example

Write the Gauss Seidel method applied to the linear system (1)-(3) using the vector-matrix format (4):

$$
N^{G S} \mathbf{x}^{(k+1)}=b+P^{G S} \mathbf{x}^{k}, \quad b=[10,19,0]^{T} .
$$

Recall,

$$
\begin{aligned}
& x_{1}^{(k+1)}=\frac{10-x_{2}{ }^{(k)}+x_{3}(k)}{9} \\
& x_{2}{ }^{(k+1)}=\frac{19-2 x_{1} 1^{(k+1)}-3 x_{3}(k)}{10} \\
& x_{3}{ }^{(k+1)}=\frac{-\left(3 x_{1}{ }^{(k+1)}+4 x_{2}{ }^{(k+1)}\right)}{11} .
\end{aligned}
$$

Solution

Numerical
Analysis: Solutions of
System of
Linear
Equation
Natasha S. Sharma, PhD

We start in the usual way of multiplying the first equation by 9 , second equation by 10 and third by 11 to obtain

$$
\begin{aligned}
9 x_{1}{ }^{(k+1)} & =10-x_{2}^{(k)}+x_{3}^{(k)} \\
10 x_{2}{ }^{(k+1)} & =19-2 x_{1}^{(k+1)}-3 x_{3}^{(k)} \\
11 x_{3}{ }^{(k+1)} & =-\left(3 x_{1}{ }^{(k+1)}+4 x_{2}{ }^{(k+1)}\right)
\end{aligned}
$$

Remember all terms with superscript $k+1$ belong to the LHS thus, rearranging gives us

$$
\begin{aligned}
9 x_{1}{ }^{(k+1)} & =10-x_{2}{ }^{(k)}+x_{3}(k) \\
2 x_{1}{ }^{(k+1)}+10 x_{2}{ }^{(k+1)} & =19-3 x_{3}(k) \\
3 x_{1}{ }^{(k+1)}-4 x_{2}^{(k+1)} 11 x_{3}{ }^{(k+1)} & =0 .
\end{aligned}
$$

We already have $b=[10,19,0]^{T}$. What is $N^{G S}$ and $P^{G S}$?

Numerical
Analysis:
Solutions of
System of
Linear
Equation
Natasha S. Sharma, PhD

$$
\begin{aligned}
9 x_{1}{ }^{(k+1)} & =10-x_{2}{ }^{(k)}+x_{3}{ }^{(k)} \\
2 x_{1}{ }^{(k+1)}+10 x_{2}{ }^{(k+1)} & =19-3 x_{3}{ }^{(k)} \\
3 x_{1}{ }^{(k+1)}-4 x_{2}{ }^{(k+1)} 11 x_{3}{ }^{(k+1)} & =0 .
\end{aligned}
$$

It is easier to obtain $P^{G S}$ in this case!

$$
P^{G S}=\left[\begin{array}{ccc}
0 & -1 & -1 \\
0 & 0 & -3 \\
0 & 0 & 0
\end{array}\right]
$$

since $P^{G S} \mathbf{x}^{(k)}=\left[\begin{array}{c}-x_{2}{ }^{(k)}+x_{3}(k) \\ -3 x_{3}(k) \\ 0\end{array}\right]$ (verify!)

Numerical
Analysis: Solutions of
System of
Linear
Equation
Natasha S. Sharma, PhD

$$
N^{G S}=P^{G S}+A=\left[\begin{array}{ccc}
0 & -1 & -1 \\
0 & 0 & -3 \\
0 & 0 & 0
\end{array}\right]+\left[\begin{array}{ccc}
9 & 1 & 1 \\
2 & 10 & 3 \\
3 & 4 & 11
\end{array}\right]=\underbrace{\left[\begin{array}{ccc}
9 & 0 & 0 \\
2 & 10 & 0 \\
3 & 4 & 11
\end{array}\right]}_{\text {Lower half of } \mathrm{A}!}
$$

Observations

- For the Gauss Seidel iterative method too, the matrices N^{J} and P^{J} stay unchanged!
■ Notice the zero diagonal entries for $P^{G S}$ too! Common feature with Jacobi matrices!
- The diagonal entries of $N^{G S}$ and A are the same! Common feature with Jacobi matrices!

Convergence Analysis

Numerical
Analysis: Solutions of System of Linear
Equation
Natasha S. Sharma, PhD

Theorem (Convergence Condition)
For any iterative method

$$
N \mathbf{x}^{(k+1)}=b+P \mathbf{x}^{(k)}
$$

to solve $A x=b$, the condition for convergence is

$$
\left\|N^{-1} P\right\|<1
$$

for all choices of initial guess \mathbf{x}^{0} and b !

(T) Observations

Numerical
Analysis: Solutions of System of Linear Equation

■ For Jacobi method, this condition is equivalent to requiring

$$
\sum_{j=1, j \neq i}^{n}\left|a_{i j}\right|<\left|a_{i i}\right|, \quad i=1, \cdots n
$$

A matrix $A=\left(a_{i j}\right)_{i, j=1}^{n}$ satisfying the above condition is called diagonally dominant.

