Math 4329: Numerical Analysis Chapter 04: Spline Interpolation

Natasha S. Sharma, PhD

Why another interpolating polynomial?

Math 4329:
Numerical
Analysis
Chapter 04:
Spline
Interpolation
Natasha S.
Sharma, PhD

Consider the following discrete data:

x	0	1	2	2.5	3	3.5	4
y	2.5	0.5	0.5	1.5	1.5	1.125	0

Our goal is to construct a polynomial which:
1 interpolates the given 7 data points,
2 has range between 0 and 2.5,
3 does not contain sharp corners i.e., a smooth function.

Math 4329:
Numerical Analysis Chapter 04: Spline Interpolation

Natasha S. Sharma, PhD

Idea

We can construct a polynomial interpolating 7 points. This polynomial should be of degree 6 and assumes the following shape

Voilates condition 2 !

Math 4329:
Numerical Analysis Chapter 04: Spline Interpolation

Natasha S. Sharma, PhD

Idea

We can construct a piecewise linear polynomial simply by connecting the points by straight lines between $\{0,1\},\{1,2\},\{2,2.5\},\{2.5,3\},\{3,3.5\}$, and $\{3.5,4\}$.

Voilates condition -3 !

Math 4329:
Numerical Analysis Chapter 04: Spline Interpolation

Natasha S. Sharma, PhD

Idea

Connect the data using a succession of quadratic interpolating polynomials for the following discrete data points: $\{0,1,2\},\{2,2.5,3\}$, and $\{3,3.5,4\}$.

Voilates condition 3 at $x=2,3!$

Natural Cubic Spline

Math 4329:
Numerical Analysis
Chapter 04:
Spline Interpolation

Natasha S.
Sharma, PhD

Conclusion

We need to construct an interpolating polynomial $s(x)$ which satisfies conditions (1)-(5)
$s(x)$ is a cubic polynomial on $\left[x_{i-1}, x_{i}\right], \quad i=1,2, \cdots n$,

$$
\begin{equation*}
\lim _{x \rightarrow x_{i}^{-}} s^{\prime}\left(x_{i}\right)=\lim _{x \rightarrow x_{i}^{+}} s^{\prime}\left(x_{i}\right), \quad i=1, \cdots n-1, \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{x \rightarrow x_{i}^{-}} s^{\prime \prime}\left(x_{i}\right)=\lim _{x \rightarrow x_{i}^{+}} s^{\prime \prime}\left(x_{i}\right), \quad i=1, \cdots n-1 \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
s^{\prime \prime}\left(x_{0}\right)=s^{\prime \prime}\left(x_{n}\right)=0 \tag{4}
\end{equation*}
$$

Note: $s(x), s^{\prime}(x)$ and $s^{\prime \prime}(x)$ are continuous on $\left[x_{0}, x_{n}\right]$.

Back to our original problem...

Math 4329:
Numerical
Analysis Chapter 04:

Spline Interpolation

Natasha S. Sharma, PhD

Calculate the natural cubic spline interpolating the data:

x	0	1	2	2.5	3	3.5	4
y	2.5	0.5	0.5	1.5	1.5	1.125	0

Using (1)-(5), we can construct the following cubic spline:

Figure: Satisfies the three conditions!

Questions on cubic splines

Math 4329:
Numerical
Analysis
Chapter 04:
Spline Interpolation

Natasha S. Sharma, PhD

1 Find the cubic spline satisfying

$$
s(0)=0, s(1)=1, s(2)=2, s^{\prime}(0)=0, s^{\prime \prime}(2)=2 .
$$

2 Check whether the following function is a spline:

$$
s(x)= \begin{cases}x^{3} & 0 \leq x \leq 1 \\ 2 x-1 & 1<x<2 \\ 3 x^{2}-2 & 2 \leq x \leq 3\end{cases}
$$

3 Find a, b, c and d such that the following $s(x)$ is a natural cubic spline:

$$
s(x)=\left\{\begin{array}{lc}
(x+1)^{3}, & -2 \leq x \leq-1 \\
a x^{3}+b x^{2}+c x+d, & -1<x<1 \\
(x-1)^{2}, & 1 \leq x \leq 2
\end{array}\right.
$$

Construction of Splines

Math 4329:
Numerical
Analysis Chapter 04:

Spline Interpolation

Introduce variables M_{0}, \cdots, M_{n} such that

$$
M_{i} \equiv S^{\prime \prime}\left(x_{i}\right), \quad i=0, \cdots n
$$

Since $S(x)$ is a cubic spline on $\left[x_{j-1}, x_{j}\right]$
$\Longrightarrow S^{\prime \prime}(x)$ is linear hence determined by its values at the end points x_{j-1} and x_{j}.

$$
\begin{equation*}
S^{\prime \prime}(x)=M_{j-1} \frac{x_{j}-x}{x_{j}-x_{j-1}}+M_{j} \frac{x-x_{j-1}}{x_{j}-x_{j-1}} \tag{6}
\end{equation*}
$$

Construction of Splines

Math 4329:
Numerical Analysis Chapter 04:

Spline Interpolation

Natasha S. Sharma, PhD

From the second antiderivative of $S(x)$ on $\left[x_{j-1}, x_{j}\right]$ and applying the interpolating conditions:

$$
S\left(x_{j-1}\right)=y_{j-1}, S\left(x_{j}\right)=y_{j}, \text { we obtain }
$$

$$
\begin{align*}
s(x) & =\frac{\left(x_{j}-x\right)^{3} M_{j-1}+\left(x-x_{j-1}\right)^{3} M_{j}}{6\left(x_{j}-x_{j-1}\right)} \\
& +\frac{\left(x_{j}-x\right) y_{j-1}+\left(x-x_{j-1}\right) y_{j}}{\left(x_{j}-x_{j-1}\right)} \\
& -\frac{1}{6}\left(x_{j}-x_{j-1}\right)\left(\left(x_{j}-x\right) M_{j-1}+\left(x-x_{j-1}\right) M_{j}\right), \tag{7}
\end{align*}
$$

where $j=1, \cdots, n$.

Construction of Splines

Math 4329:
Numerical
Analysis
Chapter 04:
Spline Interpolation

Natasha S. Sharma, PhD

Formula (6) ensures the continuity of $S^{\prime \prime}(x)$ while (7) implies the continuity of $S(x)$ and that it interpolates the given data. To guarantee the continuity of $S^{\prime}(x)$ we require $S^{\prime \prime}(x)$ on $\left[x_{j-1}, x_{j}\right]$ and $\left[x_{j}, x_{j+1}\right]$ to have the same value at the knot $x_{j}, j=1, \cdots n-1$.

$$
\begin{array}{r}
\frac{x_{j}-x_{j-1}}{6} M_{j-1}+\frac{x_{j+1}-x_{j-1}}{3} M_{j}+\frac{x_{j+1}-x_{j}}{6} M_{j+1}=, \\
\frac{y_{j+1}-y_{j}}{x_{j+1}-x_{j}}-\frac{y_{j}-y_{j-1}}{x_{j}-x_{j-1}} \\
M_{0}=M_{n}=0, \quad j=1, \cdots n-1 . \tag{9}
\end{array}
$$

leads to the values of M_{0}, \cdots, M_{n} and hence the spline $S(x)$.

Natural Spline Construction

Math 4329:
Numerical
Analysis
Chapter 04:
Spline Interpolation

Natasha S. Sharma, PhD

Example

Calculate the natural cubic spline interpolating the data

$$
\left\{(1,1),\left(2, \frac{1}{2}\right),\left(3, \frac{1}{3}\right),\left(4, \frac{1}{4}\right)\right\}
$$

Here, $n=3$ and $x_{j+1}-x_{j}=1$. The system in unknowns $M_{0}, M_{1}, M_{2}, M_{3}$ becomes:

$$
\begin{aligned}
\frac{1}{6} M_{0}+\frac{2}{3} M_{1}+\frac{1}{6} M_{2} & =\frac{1}{3} \\
\frac{1}{6} M_{1}+\frac{2}{3} M_{2}+\frac{1}{6} M_{3} & =\frac{1}{12} .
\end{aligned}
$$

Using $M_{0}=M_{3}=0$ we obtain

$$
M_{1}=\frac{1}{2}, \quad M_{2}=0
$$

Math 4329:
Numerical Analysis Chapter 04: Spline Interpolation

The spline is of the form:

$$
s(x)= \begin{cases}\frac{x^{3}}{12}-\frac{x^{2}}{4}-\frac{x}{3}+\frac{3}{2}, & 1 \leq x \leq 2, \\ -\frac{x^{3}}{12}+\frac{3 x^{2}}{4}-\frac{7 x}{3}+\frac{17}{6}, & 2 \leq x \leq 3, \\ -\frac{x}{12}+\frac{7}{12}, & 3 \leq x \leq 4\end{cases}
$$

Error Analysis

Math 4329:
Numerical
Analysis
Chapter 04:
Spline Interpolation

Natasha S. Sharma, PhD

So far we only interpolated data points, wanting a smooth curve. When we seek a spline to interpolate a known function, we are interested also in the accuracy.

Theorem

Let $f(x)$ be a function defined on $[a, b]$ that we want to interpolate on evenly spaced nodes/points $x_{0}, x_{1}, \cdots, x_{n}$.

$$
h=\frac{b-a}{n}, \quad x_{j}=a+(j-1) h, j=1, \cdots, n+1
$$

and $s_{n}(x)$ be a natural cubic spline interpolating $f(x)$ at $x_{0}, \cdots x_{n}$. Then,

$$
\max _{a \leq x \leq b}\left|f(x)-s_{n}(x)\right| \leq c h^{2}
$$

where c depends on $f^{\prime \prime}(a)$ and $f^{\prime \prime}(b)$ and $\max _{a \leq x \leq b}\left|f^{(4)}(x)\right|$.

