Name:

1. Consider the fixed point iteration

$$x_{n+1} = 5 - (4+c)x_n + cx_n^5.$$
(1)

For some values of c, the iterations generated by the above formula converges to $\alpha = 1$ provided x_0 is chosen sufficiently close to α .

- (a) Identify the function g(x) which characterizes the above fixed point iteration (1). [That is, the function g(x) satisfying $x_{n+1} = g(x_n)$.]
- (b) Find the values of c to ensure the convergence of the iterations generated by the above formula provided x_0 is chosen sufficiently close to α .
- (c) For what values of c is this convergence quadratic?
- 2. Consider the task of finding a root $\alpha \approx 1.2564$ of the following equation

$$f(x) := e^x - 2x - 1 = 0, \quad x \in [1, 2].$$
(2)

We consider the following three fixed point iterative methods **Iter_1-Iter_3** to solve (2):

Iter_1: $x_{n+1} = \frac{e^{x_n} - 1}{2}$ Iter_2: $x_{n+1} = e^{x_n} - x_n - 1$ Iter_3: $x_{n+1} = \ln(2x_n + 1)$.

Each of the iteration formulas Iter_1–Iter_3 have the form

$$x_{n+1} = g(x_n)$$

for appropriately chosen continuous functions g(x).

(a) Determine (without actually iterating the formulas) which of the fixed point iterations **Iter_1–Iter_3** will converge to the root α (provided the initial guess x_0 is chosen to be sufficiently close to α).

Furthermore, show that the fixed point iterative methods which converge, do so at a linear rate.

(b) Design a fixed point iterative method which converges **quadratically** (provided the initial guess x_0 is chosen sufficiently close to α) and assumes the following form:

Iter_4:
$$x_{n+1} = g_4(x_n)$$

for a suitable choice of $g_4(x)$. Please specify the function $g_4(x)$ characterizing the iterative method and provide sufficient reason for the quadratic convergence of **Iter_4**.

(c) Write a MATLAB program that approximates the root α in the interval [1,2] using the iterative method **Iter_4** that you obtained in part (b). Call this program yourlastname_iter4.m.

Please make sure that your program takes as **input**:

- i. \mathbf{x}_0 : initial guess
- ii. tol: error tolerance
- iii. nmax: maximum number of permissible iterations.

Make sure that the **output** printed to the screen looks like:

k	x_k	f(x_k)	\alpha - x_k	order
0				
1				
2				
_				

where order $\approx \ln \left| \frac{(x_{k+1}-x_k)}{(x_k-x_{k-1})} \right| / \ln \left| \frac{(x_k-x_{k-1})}{(x_{k-1}-x_{k-2})} \right|, \ k \ge 2.$