Math 4329: Worksheet 06

Dr. Natasha Sharma

Name: \qquad

1. Consider the fixed point iteration

$$
\begin{equation*}
x_{n+1}=5-(4+c) x_{n}+c x_{n}^{5} . \tag{1}
\end{equation*}
$$

For some values of c, the iterations generated by the above formula converges to $\alpha=1$ provided x_{0} is chosen sufficiently close to α.
(a) Identify the function $g(x)$ which characterizes the above fixed point iteration (1). [That is, the function $g(x)$ satisfying $x_{n+1}=g\left(x_{n}\right)$.]
(b) Find the values of c to ensure the convergence of the iterations generated by the above formula provided x_{0} is chosen sufficiently close to α.
(c) For what values of c is this convergence quadratic?
2. Consider the task of finding a root $\alpha \approx 1.2564$ of the following equation

$$
\begin{equation*}
f(x):=e^{x}-2 x-1=0, \quad x \in[1,2] . \tag{2}
\end{equation*}
$$

We consider the following three fixed point iterative methods Iter_1-Iter_3 to solve (2):
Iter_1: $x_{n+1}=\frac{e^{x_{n}}-1}{2}$
Iter_2: $x_{n+1}=e^{x_{n}}-x_{n}-1$
Iter $_$3: $x_{n+1}=\ln \left(2 x_{n}+1\right)$.
Each of the iteration formulas Iter_1-Iter_3 have the form

$$
x_{n+1}=g\left(x_{n}\right)
$$

for appropriately chosen continuous functions $g(x)$.
(a) Determine (without actually iterating the formulas) which of the fixed point iterations Iter_1-Iter_3 will converge to the root α (provided the initial guess x_{0} is chosen to be sufficiently close to α).
Furthermore, show that the fixed point iterative methods which converge, do so at a linear rate.
(b) Design a fixed point iterative method which converges quadratically (provided the initial guess x_{0} is chosen sufficiently close to α) and assumes the following form:

$$
\text { Iter_4: } \quad x_{n+1}=g_{4}\left(x_{n}\right)
$$

for a suitable choice of $g_{4}(x)$. Please specify the function $g_{4}(x)$ characterizing the iterative method and provide sufficient reason for the quadratic convergence of Iter_4.
(c) Write a MATLAB program that approximates the root α in the interval $[1,2]$ using the iterative method Iter_4 that you obtained in part (b). Call this program yourlastname_iter4.m.
Please make sure that your program takes as input:
i. x_{0} : initial guess
ii. tol: error tolerance
iii. nmax: maximum number of permissible iterations.

Make sure that the output printed to the screen looks like:

k x_k	f(x_k)	\alpha - x_k	order
0			
1			
2			
.			
-			
.			

where order $\approx \ln \left|\frac{\left(x_{k+1}-x_{k}\right)}{\left(x_{k}-x_{k-1}\right)}\right| / \ln \left|\frac{\left(x_{k}-x_{k-1}\right)}{\left(x_{k-1}-x_{k-2}\right)}\right|, k \geq 2$.

