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Global Optimization
What are we talking about?

• Problem definition:

minx f (x),
where x ∈ D ⊆ Rn

and ∀i ∈ {1, ...,p}, ci : gi(x) ./ 0 holds
./∈ { ≥,≤,=}

• We are interested in global results: finding x∗ such that:

f (x∗) ≤ f (x), ∀x inD

• This proves to be a hard problems, to which we can add
computational hardship... fighting rounding errors...
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Global Optimization
What are we talking about?
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Local minima: {x0, x1, x2, x3, x4, x5, x6, x∗1, x∗2}
Global minima: {x∗1, x∗2}
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Rounding errors? Discrete line of reals?

• When do rounding errors occur? In a computer, only a
finite amount of numbers are available...

• Discrete line? e.g., floating-point numbers
• What is the risk with rounding errors? with a discrete line

of reals?
• Well... rounding...
• Missing a result? A solution that is not, e.g., a floating-point

number

• How do we deal with that?
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Interval Computations
As a mean to avoid the pitfalls mentioned earlier (1)

• Closed intervals of reals: [a,b] = {x ∈ R | a ≤ x ≤ b}
• What do we do with intervals?

• All otherwise real computations are conducted on intervals
−→ computations are guaranteed to be correct

• Computations? following very well defined arithmetic rules:

I1 ./ I2 = {z ∈ R | ∃x ∈ I1 and ∃y ∈ I2, z = x ./ y}
• [a, b] + [c, d ] = [a + c, b + d ]
• [a, b]− [c, d ] = [a− d , b − c]
• [a, b]/[c, d ] = [a/d , b/c] where 0 6∈ [c, d ]
• Different case: [2, 4]/[−1, 1] =]−∞,−2] ∪ [2,+∞[: not an

interval!!!
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Interval Computations
As a mean to avoid the pitfalls mentioned earlier (2)

I1 ./ I2 = �{z ∈ R | ∃x ∈ I1 and ∃y ∈ I2, z = x ./ y}

• How do intervals actually solve the “computer" problem
(rounding, discretization of reals)?
• “Floating-point" intervals: set of intervals [a,b] where

both a and b are floating-point numbers −→ no value is
missed

• Outward rounding of intervals: the � is applied to all
interval computations (not just division by 0) to enforce
outward rounding
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Intervals for Global Optimization?
Let’s backtrack to “simple" optimization for a moment

min
x∈D⊆R

f (x)

• What’s f ’s minimum?
• We don’t know yet, but...
• We know it is not outside of f (D): not lower, not higher...

• What is f (D)?
• The function f evaluated on D.

Remember: now intervals are values that we can evaluate
functions on.

• E.g., (x + y)([1,2], [3.4]) = [4,6]
• Not the exact range of f : instead, an outer estimation

• E.g., (x − x)([0, 1]) = [−1, 1], which encloses the actual
range: 0, but [−1, 1] 6= 0
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Simple Interval Global Optimization Framework

x1 x2 x3 x4

Function f

boxes (xi,f (xi)), i ∈ {1, 2, 3, 4}
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x1 x2 x3 x4
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• Conclusion:
• Intervals are useful
• But: there is room for improvement: Interval evaluations,

symbolic expressions, etc.
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Simple Interval Global Optimization Framework

Example of interval evaluation differences:

0
1 1.1

p : x 7→ 2x5 + x3 − 3x2

hp : x 7→ x2(−3 + x(1 + 2x2))
evaluation of p

evaluation of hp

p, hp
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Simple Interval Global Optimization Framework

Example of interval evaluation differences:

0
1 1.4

p : x 7→ x8 − 2x5

hp : x 7→ x5(x3 − 2)

Mcrp : x 7→ x2((x3 − 1)2 − 1)

evaluation of hp

evaluation of Mcrp

p
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How to Improve this approach?

• So far: foundation of the use of intervals for both:
• An exhaustive search of the domain
• Reliable computations and reliable information about the

expected minimum
• Used in a Branch-and-Bound framework

• But we can do much better than that:
• Pruning
• ... and many other tricks to improve the pruning and

discarding of subspaces
• E.g., Evaluation of f at mid-point to lower the known upper

bound of f
• E.g., Using information (possibly intervals) about the

derivatives
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A Branch-and-Prune Approach...
... for Interval Global Optimization

1

1
4

1−1
4

x

y

c1 : y = x2

c2 : y = 1− x4
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Optimization for unconstrained optimization
• It is all a matter of combining them :)

• What about constrained optimization?
• It is not so simple... Why?
• Because the evaluation of f is not relevant until we know we

are considering a feasible subspace
• This makes shrinking the search space (= converging on

solutions) much harder...
• The key ingredient is: Constraint Solving and Domain

Contraction / Pruning
• With a hint of “tricks" (a.k.a., heuristics)
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• Constraint and optimization solver
• Combining the above-mentioned ingredients

• Larger-scale optimization
• Very challenging for interval approaches

• Dynamic systems
• To bridge the gap between what constraints and

optimization solver can do and more real applications
• Somewhere in between current static approaches and large

systems’ own challenges
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Some Applications

• Optimization as a model to solve decision-making
prediction problems
• How to best predict decisions?
• Get prior decisions (very close to Machine Learning)
• Pick a decision model and fit the prior data to it
• = Optimization: there is no perfect fit because prior

decisions are never perfect, so we look for the best fit
instead (the one that deviates the least from prior decisions)

• Pet problem: generating t-wise covering test suites
• An optimization problem
• Challenge = modeling
• Once it is modeled, it should be pretty reasonable to solve
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Summary and Future Directions

• What we have seen today:
• Ways (Intervals) to cope with computer limitations
• Limitations of intervals...

• Conclusion: there is still a lot to be done

• Future directions will have to be a combination of:
• Methods ignoring computer limitations (for speed)... and
• Intervals (for reliability)
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Thank you for your attention!

Feel free to contact me:
mceberio@utep.edu
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