Interval Global Optimization: Techniques, Challenges, Related Problems, Future Directions

Martine Ceberio

1Department of Computer Science
University of Texas at El Paso

October 14, 2014 / CPS Seminar
Outline

Target problem

Global Optimization with Intervals

Current work, Open Problems, ...

Future Directions
Global Optimization

What are we talking about?

- **Problem definition:**

 \[
 \min_x f(x),
 \]

 where \(x \in D \subseteq \mathbb{R}^n \)

 and \(\forall i \in \{1, \ldots, p\}, \ c_i : g_i(x) \bowtie 0 \) holds

 \(\bowtie \in \{\geq, \leq, =\} \)

- We are interested in global results: finding \(x^* \) such that:

 \[f(x^*) \leq f(x), \ \forall x \text{ in } D \]

- This proves to be a hard problem, to which we can add computational hardship... fighting rounding errors...
Global Optimization

What are we talking about?

- **Problem definition:**

 \[
 \min_x f(x),
 \text{ where } x \in D \subseteq \mathbb{R}^n
 \text{ and } \forall i \in \{1, \ldots, p\}, \ c_i : g_i(x) \ni 0 \text{ holds}
 \ni \in \{\geq, \leq, =\}
 \]

- We are interested in global results: finding \(x^* \) such that:

 \[f(x^*) \leq f(x), \ \forall x \ in D \]

- This proves to be a hard problems, to which we can add computational hardship... fighting rounding errors...
Global Optimization
What are we talking about?

- Problem definition:
 \[
 \min_x f(x),
 \text{where } x \in D \subseteq \mathbb{R}^n
 \text{and } \forall i \in \{1, \ldots, p\}, \ c_i : g_i(x) \ni 0 \text{ holds}
 \ni \in \{\geq, \leq, =\}
 \]

- We are interested in global results: finding \(x^* \) such that:
 \[
 f(x^*) \leq f(x), \ \forall x \in D
 \]

- This proves to be a hard problems, to which we can add computational hardship... fighting rounding errors...
Global Optimization

What are we talking about?

Local minima: \{x_0, x_1, x_2, x_3, x_4, x_5, x_6, x^*_1, x^*_2\}

Global minima: \{x^*_1, x^*_2\}
Rounding errors? Discrete line of reals?

- When do rounding errors occur? In a computer, only a finite amount of numbers are available...
- Discrete line? e.g., floating-point numbers
- What is the risk with rounding errors? with a discrete line of reals?
 - Well... rounding...
 - Missing a result? A solution that is not, e.g., a floating-point number
- How do we deal with that?
Rounding errors? Discrete line of reals?

- When do rounding errors occur? In a computer, only a finite amount of numbers are available...
- Discrete line? e.g., floating-point numbers
- What is the risk with rounding errors? with a discrete line of reals?
 - Well... rounding...
 - Missing a result? A solution that is not, e.g., a floating-point number
- How do we deal with that?
Rounding errors? Discrete line of reals?

- When do rounding errors occur? In a computer, only a finite amount of numbers are available...
- Discrete line? e.g., floating-point numbers
- What is the risk with rounding errors? with a discrete line of reals?
 - Well... rounding...
 - Missing a result? A solution that is not, e.g., a floating-point number
- How do we deal with that?
Rounding errors? Discrete line of reals?

- When do rounding errors occur? In a computer, only a finite amount of numbers are available...
- Discrete line? e.g., floating-point numbers
- What is the risk with rounding errors? with a discrete line of reals?
 - Well... rounding...
 - Missing a result? A solution that is not, e.g., a floating-point number
- How do we deal with that?
Rounding errors? Discrete line of reals?

- When do rounding errors occur? In a computer, only a finite amount of numbers are available...
- Discrete line? e.g., floating-point numbers
- What is the risk with rounding errors? with a discrete line of reals?
 - Well... rounding...
 - Missing a result? A solution that is not, e.g., a floating-point number
- How do we deal with that?
Rounding errors? Discrete line of reals?

- When do rounding errors occur? In a computer, only a finite amount of numbers are available...
- Discrete line? e.g., floating-point numbers
- What is the risk with rounding errors? with a discrete line of reals?
 - Well... rounding...
 - Missing a result? A solution that is not, e.g., a floating-point number
- How do we deal with that?
Interval Computations

As a mean to avoid the pitfalls mentioned earlier (1)

- Closed intervals of reals: \([a, b] = \{x \in \mathbb{R} \mid a \leq x \leq b\}\)
- What do we do with intervals?
 - All otherwise real computations are conducted on intervals
 \(\rightarrow\) computations are guaranteed to be correct
 - Computations? following very well defined arithmetic rules:

\[
I_1 \triangleright I_2 = \{z \in \mathbb{R} \mid \exists x \in I_1 \text{ and } \exists y \in I_2, \ z = x \triangleright y\}
\]
- \([a, b] + [c, d] = [a+c, b+d]\)
- \([a, b] - [c, d] = [a-d, b-c]\)
- \([a, b] / [c, d] = [a/d, q/c]\) where \(0 \not\in [c, d]\)
- Different case: \([2, 4] / [-1, 1] = -\infty, -2] \cup [2, +\infty]\: not\: an\: interval!!!\]
Interval Computations
As a mean to avoid the pitfalls mentioned earlier (1)

- Closed intervals of reals: \([a, b] = \{x \in \mathbb{R} | a \leq x \leq b\}\)
- What do we do with intervals?
 - All otherwise real computations are conducted on intervals → computations are guaranteed to be correct
 - Computations? following very well defined arithmetic rules:

\[
l_1 \triangleleft l_2 = \{z \in \mathbb{R} | \exists x \in l_1 \text{ and } \exists y \in l_2, z = x \triangleleft y\}
\]

- \([a, b] + [c, d] = [a + c, b + d]\)
- \([a, b] - [c, d] = [a - d, b - c]\)
- \([a, b]/[c, d] = [a/d, b/c] \text{ where } 0 \notin [c, d]\)
- Different case: \([2, 4]/[-1, 1] =] -\infty, -2] \cup [2, +\infty[: \text{ not an interval!!}\)
Interval Computations

As a mean to avoid the pitfalls mentioned earlier (1)

- Closed intervals of reals: \([a, b] = \{x \in \mathbb{R} \mid a \leq x \leq b\}\)
- What do we do with intervals?
 - All otherwise real computations are conducted on intervals → computations are guaranteed to be correct
 - Computations? following very well defined arithmetic rules:

\[
l_1 \rhd l_2 = \{z \in \mathbb{R} \mid \exists x \in l_1 \text{ and } \exists y \in l_2, \ z = x \rhd y\}
\]

- \([a, b] + [c, d] = [a + c, b + d]\)
- \([a, b] - [c, d] = [a - d, b - c]\)
- \([a, b]/[c, d] = [a/d, b/c]\) where \(0 \notin [c, d]\)
- Different case: \([2, 4]/[-1, 1] = [-\infty, -2] \cup [2, +\infty]\): not an interval!!
Interval Computations

As a mean to avoid the pitfalls mentioned earlier (1)

• Closed intervals of reals: \([a, b] = \{x \in \mathbb{R} | a \leq x \leq b\}\)

• What do we do with intervals?
 • All otherwise real computations are conducted on intervals
 \(\rightarrow\) computations are guaranteed to be correct
 • Computations? following very well defined arithmetic rules:

\[
l_1 \triangleleft l_2 = \{z \in \mathbb{R} | \exists x \in l_1 \text{ and } \exists y \in l_2, z = x \triangleleft y\}
\]

• \([a, b] + [c, d] = [a + c, b + d]\)
• \([a, b] - [c, d] = [a - d, b - c]\)
• \([a, b]/[c, d] = [a/d, b/c]\) where \(0 \not\in [c, d]\)
• Different case: \([2, 4]/[-1, 1] =] - \infty, -2] \cup [2, +\infty[\text{: not an interval!!!}\)
Interval Computations

As a mean to avoid the pitfalls mentioned earlier (1)

- Closed intervals of reals: \([a, b] = \{x \in \mathbb{R} \mid a \leq x \leq b\}\)
- What do we do with intervals?
 - All otherwise real computations are conducted on intervals → computations are guaranteed to be correct
 - Computations? following very well defined arithmetic rules:

 \[l_1 \bowtie l_2 = \{z \in \mathbb{R} \mid \exists x \in l_1 \text{ and } \exists y \in l_2, z = x \bowtie y \}\]

- \([a, b] + [c, d] = [a + c, b + d]\)
- \([a, b] - [c, d] = [a - d, b - c]\)
- \([a, b]/[c, d] = [a/d, b/c]\) where 0 \(\not\in [c, d]\)
- Different case: \([2, 4]/[-1, 1] =]-\infty, -2] \cup [2, +\infty[: \text{not an interval!!}\]
Interval Computations

As a mean to avoid the pitfalls mentioned earlier (1)

- Closed intervals of reals: $[a, b] = \{x \in \mathbb{R} | a \leq x \leq b\}$
- What do we do with intervals?
 - All otherwise real computations are conducted on intervals \rightarrow computations are guaranteed to be correct
 - Computations? following very well defined arithmetic rules:

 $l_1 \Delta l_2 = \{z \in \mathbb{R} | \exists x \in l_1 \text{ and } \exists y \in l_2, z = x \Delta y\}$

- $[a, b] + [c, d] = [a + c, b + d]$
- $[a, b] - [c, d] = [a - d, b - c]$
- $[a, b]/[c, d] = [a/d, b/c]$ where $0 \notin [c, d]$
- Different case: $[2, 4]/[-1, 1] =] - \infty, -2] \cup [2, +\infty[: \text{not an interval}!!$
Interval Computations

As a mean to avoid the pitfalls mentioned earlier (1)

- Closed intervals of reals: \([a, b] = \{x \in \mathbb{R} \mid a \leq x \leq b\}\)
- What do we do with intervals?
 - All otherwise real computations are conducted on intervals
 \[\rightarrow\] computations are guaranteed to be correct
 - Computations? following very well defined arithmetic rules:

\[
l_1 \trianglel_2 = \{z \in \mathbb{R} \mid \exists x \in l_1 \text{ and } \exists y \in l_2, \ z = x \trianglel y\}
\]

- \([a, b] + [c, d] = [a + c, b + d]\)
- \([a, b] - [c, d] = [a - d, b - c]\)
- \([a, b]/[c, d] = [a/d, b/c]\) where \(0 \not\in [c, d]\)
- Different case: \([2, 4]/[-1, 1] =] - \infty, -2]\ \cup [2, +\infty[: \text{not an interval}!!\]
Interval Computations

As a mean to avoid the pitfalls mentioned earlier (1)

- Closed intervals of reals: \([a, b] = \{x \in \mathbb{R} \mid a \leq x \leq b\}\)
- What do we do with intervals?
 - All otherwise real computations are conducted on intervals
 \(\rightarrow\) computations are guaranteed to be correct
 - Computations? following very well defined arithmetic rules:

\[
l_1 \Join l_2 = \{z \in \mathbb{R} \mid \exists x \in l_1 \text{ and } \exists y \in l_2, z = x \Join y\}
\]

- \([a, b] + [c, d] = [a + c, b + d]\)
- \([a, b] - [c, d] = [a - d, b - c]\)
- \([a, b]/[c, d] = [a/d, b/c]\) where \(0 \not\in [c, d]\)
- Different case: \([2, 4]/[-1, 1] =]-\infty, -2] \cup [2, +\infty[:\) not an interval!!!
Interval Computations

As a mean to avoid the pitfalls mentioned earlier (2)

\[l_1 \bowtie l_2 = \square \{ z \in \mathbb{R} \mid \exists x \in l_1 \text{ and } \exists y \in l_2, \ z = x \bowtie y \} \]

- How do intervals actually solve the “computer" problem (rounding, discretization of reals)?
 - “Floating-point" intervals: set of intervals \([a, b]\) where both \(a\) and \(b\) are floating-point numbers \(\rightarrow\) no value is missed
 - Outward rounding of intervals: the \(\square\) is applied to all interval computations (not just division by 0) to enforce outward rounding
Interval Computations

As a mean to avoid the pitfalls mentioned earlier (2)

\[l_1 \times l_2 = \Box \{ z \in \mathbb{R} \mid \exists x \in l_1 \text{ and } \exists y \in l_2, \ z = x \times y \} \]

- How do intervals actually solve the "computer" problem (rounding, discretization of reals)?
 - “Floating-point” intervals: set of intervals \([a, b]\) where both \(a\) and \(b\) are floating-point numbers \(\rightarrow\) no value is missed
 - Outward rounding of intervals: the \(\Box\) is applied to all interval computations (not just division by 0) to enforce outward rounding
Interval Computations

As a mean to avoid the pitfalls mentioned earlier (2)

\[l_1 \times l_2 = \Box \{ z \in \mathbb{R} \mid \exists x \in l_1 \text{ and } \exists y \in l_2, \, z = x \times y \} \]

- How do intervals actually solve the “computer” problem (rounding, discretization of reals)?
 - “Floating-point” intervals: set of intervals \([a, b]\) where both \(a\) and \(b\) are floating-point numbers \(\rightarrow\) no value is missed
 - **Outward rounding of intervals:** the \(\Box\) is applied to all interval computations (not just division by 0) to enforce outward rounding
Intervals for Global Optimization?

Let’s backtrack to “simple” optimization for a moment

\[
\min_{x \in D \subseteq \mathbb{R}} f(x)
\]

- What’s \(f \)’s minimum?
 - We don’t know yet, but...
 - We know it is not outside of \(f(D) \): not lower, not higher...

- What is \(f(D) \)?
 - The function \(f \) evaluated on \(D \).

 Remember: now intervals are values that we can evaluate functions on.
 - E.g., \((x + y)([1, 2], [3, 4]) = [4, 6] \)
 - Not the exact range of \(f \): instead, an outer estimation

 E.g., \((x - x)([0, 1]) = [-1, 1] \), which encloses the actual range 0, but \([-1, 1] \neq 0 \)
Intervals for Global Optimization?

Let’s backtrack to “simple” optimization for a moment

\[\min_{x \in D \subseteq \mathbb{R}} f(x) \]

• What’s \(f \)’s minimum?
 • We don’t know yet, but...
 • We know it is not outside of \(f(D) \): not lower, not higher...

• What is \(f(D) \)?
 • The function \(f \) evaluated on \(D \).
 Remember: now intervals are values that we can evaluate functions on.
 • E.g., \((x + y)([1, 2], [3, 4]) = [4, 6] \)
 • Not the exact range of \(f \): instead, an outer estimation
 • E.g., \((x - y)([0, 1]) = [-1, 1], \) which encloses the actual range: 0, but \([-1, 1] \neq 0 \)
Intervals for Global Optimization?
Let’s backtrack to “simple” optimization for a moment

\[
\min_{x \in D \subseteq \mathbb{R}} f(x)
\]

- What’s \(f \)’s minimum?
 - We don’t know yet, but...
 - We know it is not outside of \(f(D) \): not lower, not higher...

- What is \(f(D) \)?
 - The function \(f \) evaluated on \(D \).

 Remember: now intervals are values that we can evaluate functions on.
 - E.g., \((x + y)([1, 2], [3, 4]) = [4, 6]\)
 - Not the exact range of \(f \): instead, an outer estimation
 - E.g., \((x - x)([0, 1]) = [-1, 1]\), which encloses the actual range: 0, but \([-1, 1] \neq 0\)
Intervals for Global Optimization?

Let’s backtrack to “simple” optimization for a moment

\[
\min_{x \in D \subseteq \mathbb{R}} f(x)
\]

- What’s \(f \)’s minimum?
 - We don’t know yet, but...
 - We know it is not outside of \(f(D) \): not lower, not higher...

- What is \(f(D) \)?
 - The function \(f \) evaluated on \(D \).
 - Remember: now intervals are values that we can evaluate functions on.
 - E.g., \((x + y)([1, 2], [3.4]) = [4, 6]\)
 - Not the exact range of \(f \): instead, an outer estimation
 - E.g., \((x - x)([0, 1]) = [-1, 1]\), which encloses the actual range: 0, but \([-1, 1] \neq 0\)
Intervals for Global Optimization?
Let’s backtrack to “simple" optimization for a moment

\[
\min_{x \in D \subseteq \mathbb{R}} f(x)
\]

- What’s \(f \)'s minimum?
 - We don’t know yet, but...
 - We know it is not outside of \(f(D) \): not lower, not higher...
- What is \(f(D) \)?
 - The function \(f \) evaluated on \(D \).

 \textit{Remember: now intervals are values that we can evaluate functions on.}
 - E.g., \((x + y)([1, 2], [3.4]) = [4, 6]\)
 - Not the exact range of \(f \): instead, an outer estimation
 - E.g., \((x - x)([0, 1]) = [-1, 1]\), which encloses the actual range: 0, but \([-1, 1] \neq 0\)
Intervals for Global Optimization?
Let’s backtrack to “simple” optimization for a moment

$$\min_{x \in D \subseteq \mathbb{R}} f(x)$$

• What’s f’s minimum?
 • We don’t know yet, but...
 • We know it is not outside of $f(D)$: not lower, not higher...

• What is $f(D)$?
 • The function f evaluated on D.
 Remember: now intervals are values that we can evaluate functions on.
 • E.g., $(x + y)([1, 2], [3.4]) = [4, 6]$
 • Not the exact range of f: instead, an outer estimation
 E.g., $(x - x)([0, 1]) = [-1, 1]$, which encloses the actual range: 0, but $[-1, 1] \neq 0$
Intervals for Global Optimization?
Let’s backtrack to “simple” optimization for a moment

\[
\min_{x \in D \subseteq \mathbb{R}} f(x)
\]

• What’s \(f \)’s minimum?
 • We don’t know yet, but...
 • We know it is not outside of \(f(D) \): not lower, not higher...

• What is \(f(D) \)?
 • The function \(f \) evaluated on \(D \).

 \textit{Remember: now intervals are values that we can evaluate functions on.}
 • E.g., \((x + y)([1, 2], [3.4]) = [4, 6]\)
 • Not the exact range of \(f \): instead, an outer estimation
 • E.g., \((x - x)([0, 1]) = [-1, 1]\), which encloses the actual range: 0, but \([-1, 1] \neq 0\)
Intervals for Global Optimization?
Let’s backtrack to “simple” optimization for a moment

$$\min_{x \in D \subseteq \mathbb{R}} f(x)$$

- What’s f’s minimum?
 - We don’t know yet, but...
 - We know it is not outside of $f(D)$: not lower, not higher...
- What is $f(D)$?
 - The function f evaluated on D.

 Remember: now intervals are values that we can evaluate functions on.
 - E.g., $(x + y)([1, 2], [3.4]) = [4, 6]$
 - Not the exact range of f: instead, an outer estimation
 - E.g., $(x - x)([0, 1]) = [-1, 1]$, which encloses the actual range: 0, but $[-1, 1] \neq 0$
Simple Interval Global Optimization Framework

$$\text{boxes } (x_i, f(x_i)), \ i \in \{1, 2, 3, 4\}$$
Simple Interval Global Optimization Framework

Function f:

boxes $(x_i, f(x_i)), i \in \{1, 2, 3, 4\}$

no box removed
Simple Interval Global Optimization Framework

Function f boxes $(x_i, f(x_i)), i \in \{1, 2, 3, 4\}$
Simple Interval Global Optimization Framework

• Conclusion:
 • Intervals are useful
 • But: there is room for improvement: Interval evaluations, symbolic expressions, etc.
Simple Interval Global Optimization Framework

• Conclusion:
 • Intervals are useful
 • But: there is room for improvement: Interval evaluations, symbolic expressions, etc.
Simple Interval Global Optimization Framework

• Conclusion:
 • Intervals are useful
 • But: there is room for improvement: **Interval evaluations, symbolic expressions, etc.**
Simple Interval Global Optimization Framework

Example of interval evaluation differences:

\[p : x \mapsto 2x^5 + x^3 - 3x^2 \]
\[h_p : x \mapsto x^2(-3 + x(1 + 2x^2)) \]
Simple Interval Global Optimization Framework

Example of interval evaluation differences:

\[p : x \mapsto x^8 - 2x^5 \]
\[h_p : x \mapsto x^5(x^3 - 2) \]
\[Mcr_p : x \mapsto x^2((x^3 - 1)^2 - 1) \]

Evaluation of \(h_p \) and \(Mcr_p \).
How to Improve this approach?

- **So far:** foundation of the use of intervals for both:
 - An exhaustive search of the domain
 - Reliable computations and reliable information about the expected minimum
 - Used in a **Branch-and-Bound framework**
- **But** we can do much better than that:
 - Pruning
 - ... and many other tricks to improve the pruning and discarding of subspaces
 - E.g., Evaluation of f at mid-point to lower the known upper bound of f
 - E.g., Using information (possibly intervals) about the derivatives
How to Improve this approach?

- **So far:** foundation of the use of intervals for both:
 - An exhaustive search of the domain
 - Reliable computations and reliable information about the expected minimum
 - Used in a **Branch-and-Bound framework**

- **But** we can do much better than that:
 - **Pruning**
 - ... and many other tricks to improve the pruning and discarding of subspaces
 - E.g., Evaluation of f at mid-point to lower the known upper bound of f
 - E.g., Using information (possibly intervals) about the derivatives
How to Improve this approach?

- **So far:** foundation of the use of intervals for both:
 - An exhaustive search of the domain
 - Reliable computations and reliable information about the expected minimum
 - Used in a Branch-and-Bound framework

- **But** we can do much better than that:
 - Pruning
 - ... and many other tricks to improve the pruning and discarding of subspaces
 - E.g., Evaluation of f at mid-point to lower the known upper bound of f
 - E.g., Using information (possibly intervals) about the derivatives
How to Improve this approach?

- **So far:** foundation of the use of intervals for both:
 - An exhaustive search of the domain
 - Reliable computations and reliable information about the expected minimum
 - Used in a **Branch-and-Bound framework**

- **But** we can do much better than that:
 - Pruning
 - ... and many other tricks to improve the pruning and discarding of subspaces
 - E.g., Evaluation of f at mid-point to lower the known upper bound of f
 - E.g., Using information (possibly intervals) about the derivatives
How to Improve this approach?

- **So far:** foundation of the use of intervals for both:
 - An exhaustive search of the domain
 - Reliable computations and reliable information about the expected minimum
 - Used in a *Branch-and-Bound framework*

- **But** we can do much better than that:
 - Pruning
 - ... and many other tricks to improve the pruning and discarding of subspaces
 - E.g., Evaluation of \(f \) at mid-point to lower the known upper bound of \(f \)
 - E.g., Using information (possibly intervals) about the derivatives
How to Improve this approach?

- **So far:** foundation of the use of intervals for both:
 - An exhaustive search of the domain
 - Reliable computations and reliable information about the expected minimum
 - Used in a **Branch-and-Bound framework**
- **But** we can do much better than that:
 - **Pruning**
 - ... and many other tricks to improve the pruning and discarding of subspaces
 - E.g., Evaluation of f at mid-point to lower the known upper bound of f
 - E.g., Using information (possibly intervals) about the derivatives
How to Improve this approach?

- **So far:** foundation of the use of intervals for both:
 - An exhaustive search of the domain
 - Reliable computations and reliable information about the expected minimum
 - Used in a **Branch-and-Bound framework**
- **But** we can do much better than that:
 - **Pruning**
 - ... and many other tricks to improve the pruning and discarding of subspaces
 - E.g., Evaluation of \(f \) at mid-point to lower the known upper bound of \(f \)
 - E.g., Using information (possibly intervals) about the derivatives
How to Improve this approach?

- **So far:** foundation of the use of intervals for both:
 - An exhaustive search of the domain
 - Reliable computations and reliable information about the expected minimum
 - Used in a **Branch-and-Bound framework**
- **But** we can do much better than that:
 - **Pruning**
 - ... and many other tricks to improve the pruning and discarding of subspaces
 - E.g., Evaluation of f at mid-point to lower the known upper bound of f
 - E.g., Using information (possibly intervals) about the derivatives
How to Improve this approach?

- **So far:** foundation of the use of intervals for both:
 - An exhaustive search of the domain
 - Reliable computations and reliable information about the expected minimum
 - Used in a **Branch-and-Bound framework**

- **But** we can do much better than that:
 - **Pruning**
 - ... and many other tricks to improve the pruning and discarding of subspaces
 - E.g., Evaluation of f at mid-point to lower the known upper bound of f
 - E.g., Using information (possibly intervals) about the derivatives
A Branch-and-Prune Approach...

... for Interval Global Optimization
A Branch-and-Prune Approach...
... for Interval Global Optimization
A Branch-and-Prune Approach...
... for Interval Global Optimization

c_1: y = x^2

c_2: y = 1 - x^4
A Branch-and-Prune Approach...
... for Interval Global Optimization
Constrained Global Optimization?

- Now we know the "ingredients" of Branch-and-Prune Optimization for **unconstrained** optimization
 - It is all a matter of combining them :)
- What about **constrained** optimization?
 - It is not so simple... Why?
 - Because the evaluation of f is not relevant until we know we are considering a feasible subspace
 - This makes shrinking the search space (= converging on solutions) much harder...
 - The key ingredient is: Constraint Solving and Domain Contraction / Pruning
 - With a hint of "tricks" (a.k.a., heuristics)
Constrained Global Optimization?

• Now we know the “ingredients” of Branch-and-Prune Optimization for **unconstrained** optimization
 • It is all a matter of combining them :)
• What about **constrained** optimization?
 • It is not so simple... Why?
 • Because the evaluation of f is not relevant until we know we are considering a feasible subspace
 • This makes shrinking the search space (= converging on solutions) much harder...
• The key ingredient is: Constraint Solving and Domain Contraction / Pruning
• With a hint of “tricks” (a.k.a., heuristics)
Now we know the "ingredients" of Branch-and-Prune Optimization for **unconstrained** optimization

- It is all a matter of combining them :)

What about **constrained** optimization?

- It is not so simple... Why?
- Because the evaluation of f is not relevant until we know we are considering a feasible subspace
- This makes shrinking the search space (= converging on solutions) much harder...
- The key ingredient is: **Constraint Solving** and **Domain Contraction / Pruning**
- With a hint of "tricks" (a.k.a., heuristics)
Constrained Global Optimization?

- Now we know the “ingredients” of Branch-and-Prune Optimization for *unconstrained* optimization
 - It is all a matter of combining them :)
- What about *constrained* optimization?
 - It is not so simple... Why?
 - Because the evaluation of \(f \) is not relevant until we know we are considering a feasible subspace
 - This makes shrinking the search space (= converging on solutions) much harder...
 - The key ingredient is: Constraint Solving and Domain Contraction / Pruning
 - With a hint of “tricks” (a.k.a., heuristics)
Constrained Global Optimization?

- Now we know the "ingredients" of Branch-and-Prune Optimization for **unconstrained** optimization
 - It is all a matter of combining them :)
- What about **constrained** optimization?
 - It is not so simple... Why?
 - Because the evaluation of f is not relevant until we know we are considering a feasible subspace
 - This makes shrinking the search space (= converging on solutions) much harder...
 - The key ingredient is: **Constraint Solving** and **Domain Contraction / Pruning**
 - With a hint of "tricks" (a.k.a., heuristics)
Constrained Global Optimization?

- Now we know the “ingredients” of Branch-and-Prune Optimization for **unconstrained** optimization
 - It is all a matter of combining them :)
- What about **constrained** optimization?
 - It is not so simple... Why?
 - Because the evaluation of \(f \) is not relevant until we know we are considering a feasible subspace
 - This makes shrinking the search space (= converging on solutions) much harder...
 - The key ingredient is: **Constraint Solving and Domain Contraction / Pruning**
 - With a hint of “tricks” (a.k.a., heuristics)
Constrained Global Optimization?

- Now we know the “ingredients” of Branch-and-Prune Optimization for **unconstrained** optimization
 - It is all a matter of combining them :)
- What about **constrained** optimization?
 - It is not so simple... Why?
 - Because the evaluation of f is not relevant until we know we are considering a feasible subspace
 - This makes shrinking the search space (= converging on solutions) much harder...
 - The key ingredient is: **Constraint Solving** and **Domain Contraction / Pruning**
 - With a hint of “tricks” (a.k.a., heuristics)
Now we know the “ingredients” of Branch-and-Prune Optimization for **unconstrained** optimization

- It is all a matter of combining them :)

What about **constrained** optimization?

- It is not so simple... Why?
- Because the evaluation of f is not relevant until we know we are considering a feasible subspace
- This makes shrinking the search space (= converging on solutions) much harder...

The key ingredient is: **Constraint Solving** and **Domain Contraction / Pruning**

- With a hint of “tricks” (a.k.a., heuristics)
Current Work and Considerations

- Constraint and optimization **solver**
 - Combining the above-mentioned *ingredients*
- **Larger-scale** optimization
 - Very challenging for interval approaches
- **Dynamic** systems
 - To bridge the gap between what constraints and optimization solver can do and more real applications
 - Somewhere in between current static approaches and large systems’ own challenges
Current Work and Considerations

- Constraint and optimization **solver**
 - Combining the above-mentioned **ingredients**
- Larger-scale optimization
 - Very challenging for interval approaches
- Dynamic systems
 - To bridge the gap between what constraints and optimization solver can do and more real applications
 - Somewhere in between current static approaches and large systems’ own challenges
Current Work and Considerations

- Constraint and optimization solver
 - Combining the above-mentioned ingredients
- Larger-scale optimization
 - Very challenging for interval approaches
- Dynamic systems
 - To bridge the gap between what constraints and optimization solver can do and more real applications
 - Somewhere in between current static approaches and large systems’ own challenges
Current Work and Considerations

- **Constraint and optimization solver**
 - Combining the above-mentioned *ingredients*
- **Larger-scale** optimization
 - Very challenging for interval approaches
- **Dynamic** systems
 - To bridge the gap between what constraints and optimization solver can do and more real applications
 - Somewhere in between current static approaches and large systems’ own challenges
Current Work and Considerations

- Constraint and optimization **solver**
 - Combining the above-mentioned *ingredients*
- **Larger-scale** optimization
 - Very challenging for interval approaches
- **Dynamic** systems
 - To bridge the gap between what constraints and optimization solver can do and more real applications
 - Somewhere in between current static approaches and large systems’ own challenges
Current Work and Considerations

- Constraint and optimization solver
 - Combining the above-mentioned ingredients
- **Larger-scale** optimization
 - Very challenging for interval approaches
- **Dynamic** systems
 - To bridge the gap between what constraints and optimization solver can do and more real applications
 - Somewhere in between current static approaches and large systems’ own challenges
Current Work and Considerations

- Constraint and optimization **solver**
 - Combining the above-mentioned *ingredients*
- **Larger-scale** optimization
 - Very challenging for interval approaches
- **Dynamic** systems
 - To bridge the gap between what constraints and optimization solver can do and more real applications
 - Somewhere in between current static approaches and large systems’ own challenges
Some Applications

- Optimization as a model to **solve decision-making prediction problems**
 - How to best predict decisions?
 - Get prior decisions (very close to Machine Learning)
 - Pick a decision model and **fit** the prior data to it
 - = Optimization: there is no perfect fit because prior decisions are never perfect, so we look for the best fit instead (the one that deviates the least from prior decisions)

- Pet problem: generating **t-wise covering test suites**
 - An optimization problem
 - Challenge = modeling
 - Once it is modeled, it should be pretty reasonable to solve
Some Applications

- Optimization as a model to solve decision-making prediction problems
 - How to best predict decisions?
 - Get prior decisions (very close to Machine Learning)
 - Pick a decision model and fit the prior data to it
 - = Optimization: there is no perfect fit because prior decisions are never perfect, so we look for the best fit instead (the one that deviates the least from prior decisions)
- Pet problem: generating t-wise covering test suites
 - An optimization problem
 - Challenge = modeling
 - Once it is modeled, it should be pretty reasonable to solve
Some Applications

• Optimization as a model to **solve decision-making prediction problems**
 • How to best predict decisions?
 • Get prior decisions (very close to Machine Learning)
 • Pick a decision model and **fit** the prior data to it
 • = Optimization: there is no perfect fit because prior decisions are never perfect, so we look for the best fit instead (the one that deviates the least from prior decisions)

• Pet problem: generating **t-wise covering test suites**
 • An optimization problem
 • Challenge = modeling
 • Once it is modeled, it should be pretty reasonable to solve
Some Applications

- Optimization as a model to **solve decision-making prediction problems**
 - How to best predict decisions?
 - Get prior decisions (very close to Machine Learning)
 - Pick a decision model and **fit** the prior data to it
 - = Optimization: there is no perfect fit because prior decisions are never perfect, so we look for the best fit instead (the one that deviates the least from prior decisions)

- Pet problem: generating **t-wise covering test suites**
 - An optimization problem
 - Challenge = modeling
 - Once it is modeled, it should be pretty reasonable to solve
Some Applications

- Optimization as a model to **solve decision-making prediction problems**
 - How to best predict decisions?
 - Get prior decisions (very close to Machine Learning)
 - Pick a decision model and **fit** the prior data to it
 - = Optimization: there is no perfect fit because prior decisions are never perfect, so we look for the best fit instead (the one that deviates the least from prior decisions)

- Pet problem: generating **t-wise covering test suites**
 - An optimization problem
 - Challenge = modeling
 - Once it is modeled, it should be pretty reasonable to solve
Some Applications

- Optimization as a model to solve decision-making prediction problems
 - How to best predict decisions?
 - Get prior decisions (very close to Machine Learning)
 - Pick a decision model and fit the prior data to it
 - = Optimization: there is no perfect fit because prior decisions are never perfect, so we look for the best fit instead (the one that deviates the least from prior decisions)

- Pet problem: generating t-wise covering test suites
 - An optimization problem
 - Challenge = modeling
 - Once it is modeled, it should be pretty reasonable to solve
Some Applications

- Optimization as a model to solve decision-making prediction problems
 - How to best predict decisions?
 - Get prior decisions (very close to Machine Learning)
 - Pick a decision model and fit the prior data to it
 - = Optimization: there is no perfect fit because prior decisions are never perfect, so we look for the best fit instead (the one that deviates the least from prior decisions)

- Pet problem: generating t-wise covering test suites
 - An optimization problem
 - Challenge = modeling
 - Once it is modeled, it should be pretty reasonable to solve
Some Applications

• Optimization as a model to **solve decision-making prediction problems**
 • How to best predict decisions?
 • Get prior decisions (very close to Machine Learning)
 • Pick a decision model and **fit** the prior data to it
 • = Optimization: there is no perfect fit because prior decisions are never perfect, so we look for the best fit instead (the one that deviates the least from prior decisions)

• Pet problem: generating **t-wise covering test suites**
 • An optimization problem
 • Challenge = modeling
 • Once it is modeled, it should be pretty reasonable to solve
Some Applications

- Optimization as a model to **solve decision-making prediction problems**
 - How to best predict decisions?
 - Get prior decisions (very close to Machine Learning)
 - Pick a decision model and **fit** the prior data to it
 - = Optimization: there is no perfect fit because prior decisions are never perfect, so we look for the best fit instead (the one that deviates the least from prior decisions)
- Pet problem: generating **t-wise covering test suites**
 - An optimization problem
 - Challenge = modeling
 - Once it is modeled, it should be pretty reasonable to solve
Future Directions
Summary and Future Directions

- **What we have seen today:**
 - Ways (Intervals) to cope with computer limitations
 - Limitations of intervals...

- **Conclusion:** there is still a lot to be done

- **Future directions** will have to be a combination of:
 - Methods ignoring computer limitations (for speed)... and
 - Intervals (for reliability)
Summary and Future Directions

- **What we have seen today:**
 - Ways (Intervals) to cope with computer limitations
 - Limitations of intervals...

- **Conclusion:** there is still a lot to be done

- **Future directions** will have to be a combination of:
 - Methods ignoring computer limitations (for speed)...
 - Intervals (for reliability)
Summary and Future Directions

- **What we have seen today:**
 - Ways (Intervals) to cope with computer limitations
 - Limitations of intervals...

- **Conclusion:** there is still a lot to be done

- **Future directions** will have to be a combination of:
 - Methods ignoring computer limitations (for speed)... and
 - Intervals (for reliability)
Summary and Future Directions

• What we have seen today:
 • Ways (Intervals) to cope with computer limitations
 • Limitations of intervals...

• Conclusion: there is still a lot to be done

• Future directions will have to be a combination of:
 • Methods ignoring computer limitations (for speed)... and
 • Intervals (for reliability)
Summary and Future Directions

• What we have seen today:
 • Ways (Intervals) to cope with computer limitations
 • Limitations of intervals...

• Conclusion: there is still a lot to be done

• Future directions will have to be a combination of:
 • Methods ignoring computer limitations (for speed)... and
 • Intervals (for reliability)
Summary and Future Directions

• What we have seen today:
 • Ways (Intervals) to cope with computer limitations
 • Limitations of intervals...
• Conclusion: there is still a lot to be done

• Future directions will have to be a combination of:
 • Methods ignoring computer limitations (for speed)... and
 • Intervals (for reliability)
Summary and Future Directions

• What we have seen today:
 • Ways (Intervals) to cope with computer limitations
 • Limitations of intervals...

• Conclusion: there is still a lot to be done

• Future directions will have to be a combination of:
 • Methods ignoring computer limitations (for speed)... and
 • Intervals (for reliability)
Thank you for your attention!

Feel free to contact me:

mceberio@utep.edu