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Operator Equations

Let X0,X1,Y0 be complete metric spaces with X1 ↪→ X0 and let
A : X1 → Y0 be a continuous mapping. Consider the operator equation

A(u) = f with f ∈ Y0.

Remark

We have the following obvious facts:

For the equation to be solvable, we need f ∈ im(A).

For (locally) unique solvability, A needs to be (locally) injective.

For continuous dependence on data, we moreover need A−1 : im(A)→ X1

to be continuous.

Remark

We are not going to talk about operator inclusions (in particular, variational

inequalities) and/or control and optimization problems. Also other kinds of

inverse problems are outside of our scope.
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Motivation

How do operator equations arise in applications?

Let X be a Banach space. Minimize J : X → R. The first order
optimality condition reads as: If x is an extremum of J, then
J ′(x , ·) = 0 in X ′. Hence, A : D(A) ⊂ X → X ′, A : x 7→ J ′(x , ·).

Consider a system described by its state variable U and its flux V
defined on a space or a space-time domain Ω ⊂ Rd . The
conservation law suggests divU = 0. Postulating a material law in
the form F (U,V ) = 0, we obtain a operator equation for (U,V ).

etc.

Typically, A is partial differential (or pseudo-differential) operator,
sometimes with an additional integral, difference, algebraic or other
structure.
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Examples

Example (Nonlinear membrane)

For a domain Ω ⊂ Rd , consider the strain energy functional

J(u) =

∫
Ω

(√
1 + |∇u|2 − fu

)
dx

mapping the Sobolev space H1
0 (Ω) into [0,∞). The associated operator

equation (written as a partial differential equation) reads as

− div

(
∇u√

1 + |∇u|2

)
= f in Ω, u = 0 on ∂Ω.

Rodrigues, J-F. Obstacle problems in mathematical physics. Elsevier,
1987.
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Examples – Cnt’d

Example (Lamé system)

Let Ω ⊂ Rd be a domain and let U : Ω→ Rd denote the displacement field of an
elastic body occupying Ω. With f : Ω→ Rd standing for the volumetric force acting
on the body, the balance of momentum reads as

− div σ = f ,

where σ denotes the stress tensor. In this case, U is the basis field and σ is its flux.
Assuming the body to be homogeneous and isotropic, selecting the geometric strain
tensor

ε = 1
2

(
(∇U) + (∇U)T + (∇U)T (∇U)

)
,

we obtain a hypoelastic material law

σ = λ tr(ε)Id×d + µε.

with λ, µ denoting the Lamé numbers. Hence, we arrive at the PDE

− div σ(∇u) = f in Ω, U = 0 on ∂Ω.

Here, we assumed the body to be clamped at the boundary.

Fu, Y. B., and Ogden, R. W. Nonlinear elasticity: theory and applications. Vol.
281. Cambridge University Press, 2001
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Abstract Discretization Approach

Assuming we are given an operator equation A(u) = f possessing a
unique solution u ∈ X1 for some f ∈ Y0, we want to reduce it to a
sequence of “simple” (typically, finitely dimensional) problems

Ah(uh) = f h for h > 0.

For simplicity, we only consider the so called “conformal discretizations”
with Ah : X h

1 ↪→ X1 → Y0.
The goal is to construct Ah and f h such that the respective solution
sequence {uh}h>0 converges to u in X0 as h→ 0.
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Consistency & Stability

From now on, we assume X0 and Y0 to be Banach spaces. Y1 may
remain though a metric space. Consider the numerical scheme

Ah(uh) = f h for h > 0. (∗)

There may exist a number h0 > 0 such that Equation is uniquely solvable
for any h ∈ (0, h0]. Let X be a metric space with X ↪→ X1.

Definition

The numerical scheme (∗) is called X -consistent (of order p > 0) if

‖Ah(uh)− f h‖Y0 → 0
(

= O(hp), respectively
)

as h→ 0.

Definition

The numerical scheme (∗) is called stable if there exists a number C > 0
such that for all h ∈ (0, h0]

‖uh − vh‖X1 ≤ C‖Ah(uh)− Ah(vh)‖Y0 for any uh, vh ∈ X h
1 .
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Convergence and Lax’ Principle

Definition

The numerical scheme (∗) is called X -convergent (of order p > 0) if

‖uh − u‖X0 → 0
(

= O(hp), respectively
)

as h→ 0,

where u ∈ X1 stands for the solution of the original operator equation.

Theorem (Lax’ Principle)

An X -consistent (of order p > 0) stable scheme is X -convergent (of
order p).

Proof.

Trivially, we have

‖uh − u‖X0 ≤ C‖Ah(uh)− Ah(u)‖Y0 = C‖Ah(u)‖Y0

→ 0
(

= O(hp), respectively
)

as h→ 0.
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Stochastic Operator Equations

Similar to deterministic problems, we can also consider stochastic
operator equations. Let X0,X1,Y0 be Polish spaces with X1 ↪→ X0.
Further, let A be a C 0(X1,Y0)-valued measurable variable with respect to
a probability space (Ω,F ,P). For an Y0-valued random variable f with
f ∈ im(A) P-a.s., we call the equation

A(u) = f

a stochastic operator equation.
For stochastic operator equations, probabilistic consistency, stability and
convergence notions can be adopted.
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Stationary PDE

The so-called “stationary” or “elliptic PDE” form a rather broad class of PDE. With
G ⊂ Rd denoting a “space” domain, one can consider a nonlinear differential operator
A, defined, say on some Sobolev space W s,p(G) given as

A(u) := a
(
(∇αu)|α|≤s

)
for some tensor-valued function a (here, we employ the multi-index notation).
Similarly, we consider the boundary operator B defined on some fractional
Sobolev(-Slobodeckii) space W s̃,p̃(∂G) given as B

B(u) := b
(
(∇αu)|α|≤s̃

)
for some other tensor-valued function b. A general boundary value problem for
“elliptic” PDE reads as

A(u) = f in G , B(u) = g on ∂G . (∗)

Equations of type (∗) have not fully been solved yet! Even in the linear case, the
problem is often very challenging!

Gilbarg, D. and Trudinger, N. S. Elliptic Partial Differential Equations of Second
Order, 2nd ed., Springer-Verlag, Berlin, 1984

Volevich, L. R. Solubility of boundary value problems for general elliptic systems,
Mat. Sb. (N.S.), Volume 68(110), Number 3, 373416, 1965
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A Model Problem

In this short lecture course, we look at the linear 2D Poisson equation
with Dirichlet boundary conditions as a model problem:

−4u = f in G , u = g in ∂G ,

where G ⊂ R2 is a Lipschitz domain.

Renardy, M., and Rogers, R. C. An introduction to partial differential
equations. Vol. 13. Springer Science & Business Media, 2006

Most the techniques to be presented, can though be easily generalized to
nonhomogeneous linear second order PDE with Dirichlet, Neumann or
Robin boundary conditions or even PDE system (such as Lamé system,
etc) in any space dimension.
In the following, we present two classical discretization approaches

finite differences schemes

finite elements schemes

Finite volumes, collocation methods, particle method, etc. are beyond
our scope.
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Poisson Equation

Let G ⊂ Rd be a bounded Lipschitz domain. Further, let f : Ḡ → R,
g : ∂G → R. Consider the Poisson equation

−4u = f in G , u = g in ∂G ,

The following existence and uniqueness results are known in the literature.

Weak Lp-solution: Let p, p′ ∈ (1,∞) such that 1
p

+ 1
p′ = 1. Further, let

f ∈ Lp′(G), g ∈W 1−1/p,p(G). Then there exists a unique weak solution
u ∈W 1,p(G).

Strong Lp-solution: Let p ∈ (1,∞): If ∂G is piecewise C 1,1, with all
cusps on the boundary are of angle being greater equal π

2
,

f ∈ Lp(G), g ∈W 2−1/p,p(∂G), there exists a unique strong solution
u ∈W 2,p(G).

Classical (Hölder) solution: Let α ∈ (0, 1). If ∂G is C 2,α, f ∈ C 0,α(Ḡ)
and g ∈ C 2,α(∂G), there exists a unique classical solution
u ∈ C 2,α(G) ∩ C 0,α(Ḡ).

In the following, we assume the existence of a classical solution to
Poisson equation.
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Equidistant Lattices

For simplicity, we first let G = (0, 1)2 be the unit square and consider the
equidistant lattice over G

Gh = {(ih, jh) | i , j ∈ {0, . . . ,M}}
with a space step h = 1

M > 0 for some M ∈ N.

-

6

0 1 x

1

y

Figure: Lattice exaple with M = 5, h = 0.2
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Finite Difference Approximation

The key idea of finite difference methods

Replace derivatives with diference quotients

For v ∈ C4([a, b],R), Taylor’s theorem states

v(s ± h) = v(s)± hv ′(s) +
h2

2
v ′′(s)±

h3

6
v (3)(s) +

h4

24
v (4)(η±)

for s, s ± h ∈ [a, b] with η− ∈ [s − h, s], η+ ∈ [s, s + h]. Therefore, for v ∈ C4([a, b]),∣∣∣∣ 1

h2
(−v(s − h) + 2v(s)− v(s + h)) + v ′′(s)

∣∣∣∣ =

=

∣∣∣∣h−2

[
− v(s) + hv ′(s)−

h2

2
v ′′(s) +

h3

6
v (3)(s)−

h4

24
v (4)(η−) + 2v(s)

− v(s)− hv ′(s)−
h2

2
v ′′(s)−

h3

6
v (3)(s)−

h4

24
v (4)(η+)

]
+ v ′′(s)

∣∣∣∣
=

h2

24

∣∣∣v (4)(η−) + v (4)(η+)
∣∣∣ ≤ Ch2 = O(h2).

and, consequently,

−v ′′(s) =
1

h2

(
− v(s − h) + 2v(s)− v(s + h)

)
+ O(h2).
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Finite Difference Approximation – Cnt’d

Letting uij = u(ih, jh), we get

−(∆u)ij =
1

h2

(
− ui−1,j − ui+1,j − ui,j−1 − ui,j+1 + 4uij

)
+ O(h2).

We define the discrete “interior” domain

◦
Gh= {(ih, jh) ∈ Gh | i , j ∈ {1, . . . ,M − 1}}

and replace the PDE with

h−2
(
− ui−1,j − ui+1,j − ui,j−1 − ui,j+1 + 4ui,j

)
= fij ,

where fij = f (ih, jh). For boundary mesh points GR
h = G\

◦
Gh, we set

ui±1,j = γi±1,j or ui,j±1 = γi,j±1

if ((i ± 1)h, jh) or (ih, (j ± 1)h) ∈ ∂G .
This leads to a linear algebraic system of dimension (M − 1)2 for the unknown
numerical approximation u (the so-called lattice function)

Au = r with A ∈ R
◦
Gh,
◦
Gh , u, r ∈ R

◦
Gh .
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Finite Difference Approximation – Cnt’d

To explicitly represent A and r , we use the following enumeration for the lattice
points: we start at the bottom left corner and proceed row by row from the left to the
right. This leads to the following lattice function representation

u = (u1, . . . , uM−1), uj = (u1,j , u2,j , . . . , uM−1,j ) ∈ RM−1,

f = (f 1, . . . , f M−1), f j = (f1,j , f2,j , . . . , fM−1,j ) ∈ RM−1.

Further let

B = h−2



4 −1 0 . . . 0 0 0
−1 4 −1 . . . 0 0 0
0 −1 4 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . 4 −1 0
0 0 0 . . . −1 4 −1
0 0 0 . . . 0 −1 4


∈ RM−1,M−1,

C = h−2I ∈ RM−1,M−1,

g̃1 = (g1,0 + g0,1, g2,0, . . . , gM−2,0, gM−1,0 + gM,1),

g̃ j = (g0,j , 0, . . . , 0, gM,j ), j = 2, . . . ,M − 2,

g̃M−1 = (g0,M−1 + g1,M , g2,M , . . . , gM−2,M , gM−1,M + gM,M−1).
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Finite Difference Scheme

In the block form, we obtain the following financial difference scheme

B −C 0 . . . 0 0 0
−C B −C . . . 0 0 0

0 −C B . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . B −C 0
0 0 0 . . . −C B −C
0 0 0 . . . 0 −C B


︸ ︷︷ ︸

=:A



u1

u2

u3

...
uM−3

uM−2

uM−1



=



f 1

f 2

f 3

...
f M−3

f M−2

f M−1


+ h−2



g̃1

g̃2

g̃3

...
g̃M−3

g̃M−2

g̃M−1


︸ ︷︷ ︸

=:r

Michael Pokojovy — Numerical Analysis of PDE and SDE 18/87



Operator Equations Stationary PDE Time-Dependent PDE Stochastic Differential Equations

Solving the Discretized Problem

Though the resulting problem is “merely” a system of linear algebraic
equations, standards tools like Gauss & Jordan elimination are not applicable to
explicitly compute the inverse matrix or study its properties. Therefore, an
alternative approach is seminal here. In particular, the following two classical
tools are available:

L2 approach (Fourier analysis, spectral or energy methods, etc.)

L∞ approach (inverse monotonicity, discrete maximum principle, etc.)

For time reasons, we will only look at the L∞-approach. It should though be
pointed out that the latter can be difficult to apply to equations with
non-constant coefficients. The L2-approach is discussed in the references below

Smith, G. D. Numerical solution of partial differential equations: finite
difference methods. Oxford university press, 1985

Strikwerda, J. C. Finite difference schemes and partial differential
equations. SIAM, 2004

http://www.ima.umn.edu/~arnold//8445.f11/notes.pdf
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Foundations of the L∞-Approach

Let A ∈ RN,N be a matrix.

A is called monotone (notation: A ≥ 0) if Aij ≥ 0 for i , j ∈ {1, . . . ,N}, which is
equivalent to

u ≤ v ⇒ Au ≤ Av ∀u, v ∈ RN .

We write A ≤ B iff B − A ≥ 0

A is called inverse monotone if it is invertible with A−1 ≥ 0

A is called L0-matrix if Aij ≤ 0 for i , j ∈ {1, . . . ,N} with i 6= j

A is called M-matrix if it is an inverse monotone L0-matrix.

Note that the inverse monotonicity for matrices is a discrete counterpart of the weak
maximum principle for elliptic differential operators.
We will need the following important result.

Theorem (M-criterion)

An L0-matrix A ∈ RN,N is an M-matrix iff there exist a “majorizing element” e ∈ Rn

with e > 0 such that Ae ≥ 0 and the following “linkage” property is satisfied: For any
i0 ∈ {1, . . . ,N} with (Ae)i0 = 0 there exists a chain i0, i1, . . . , ir ∈ {1, . . . ,N} such
that (Ae)ir > 0 and Aij−1,ij 6= 0 for any j ∈ {1, . . . , r}.
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What About the Discrete Poisson Equation?

Theorem

The matrix Ah ∈ R(M−1)2,(M−1)2

originating from the classical difference
scheme is an M-matrix.

The proof is based on selecting I = (1, . . . , 1)T ∈ R(M−1)2

as a
majorizing element.

This implies that Ah is invertible.
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General Domains

Similar procedure can be applied to general curved domains. Letting

Gh = G ∩ R2
h,

we associate any point (x , y) ∈ Gh with its four neighbors
Nk = Nk(x , y , h) ∈ Ḡ , k = 1, 2, 3, 4.

Ω r pN1
µ1h

pN2
h

pN4
h

pN3
h

Figure: Neighbors
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General Domains – Cnt’d

Let further

e1 =

(
1
0

)
, e2 =

(
0
1

)
, e3 =

(
−1
0

)
, e4 =

(
0
−1

)
,

µk = µk(x , y , h) = sup
{
µ ∈ [0, 1] | (x , y) + thek ∈ G ,∀t ∈ [0, µ]

}
,

Nk = Nk(x , y , h) = (x , y) + µk(x , y , h)hek , k = 1, 2, 3, 4.

The interior discrete domain is now

◦
G h= {(x , y) ∈ Ωh |Nk(x , y , h) ∈ G , k = 1, 2, 3, 4}.

For any (x , y) ∈
◦
G h, we have µk(x , y , h) = 1, k = 1, 2, 3, 4. For interior

points, we use the same four-point discretization of Laplacian as before

h−2(−u(x−h, y)−u(x+h, y)−u(x , y−h)−u(x , y+h)+4u(x , y)) = g(x , y).
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General Domains – Cnt’d

The boundary lattice points are assinged to the set

GR
h = Gh\

◦
G h= {(x , y) ∈ Gh |Nk(x , y , h) ∈ ∂G for some k = 1, 2, 3, 4}.

We need the following approximation result.

Lemma

Let v ∈ C 3([−a, a],R) for some a > 0. Then, for any µ0, µ1 ∈ (0, 1] and
any h ≤ a, there holds∣∣∣∣ 2

µ0µ1(µ0 + µ1)h2

{
µ0v(µ1h)− (µ0 + µ1)v(0) + µ1v(−µ0h)

}
− v ′′(0)

∣∣∣∣
≤ 2

3
h ·max{|v ′′′(x)| | |x | ≤ a}.
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General Domains – Cnt’d

With the result above, we obtain a discretization for boundary lattice points

f (x , y) = h−2

{
− 2
µ1(µ1+µ3)

u(N1)− 2
µ3(µ1+µ3)

u(N3)− 2
µ2(µ2+µ4)

u(N2)

− 2
µ4(µ2+µ4)

u(N4) + 2
(

1
µ1µ3

+ 1
µ2µ4

)
u(x , y)

}
.

For each Nk ∈ ∂G , k ∈ {1, 2, 3, 4}, we plug u(Nk ) = γ(Nk ) due to u = g on ∂G .
This way, we obtain a finite difference scheme of the form

Au = r , u ∈ RGh .

Once again, for an explicit representation, the lattice points need to be enumerated.

p1 p2p3 p4 p5 p6 p7 p8 p9 p10

p11 p12 p13 p14 p15 p16 p17 p18 p19 p20

p
21

p22 p23 p24 p25 p26 p27 p28 p29

p30 p31 p32 p33 p34 p35

p36 p37 p38 p39

Figure: Lattice point enumeration example
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Consistency

We adopt the consistency, stability & convergence notions from the
Introduction. To this end, we let

A :=

(
−4

(·)|∂G

)
a view it as mapping from C 2(G) ∩ C 0(Ḡ) to C 0(G)× C 0(∂G).
This way, we have the following convergence result.

Theorem

The finite difference scheme is C 4(G) ∩ C 0(Ḡ)-consistent of order 2. In
particular, for any solution C 4-solution u of the original PDE we have

‖Ahu − rh‖L∞(G) ≤ sup{|(Ahuh)(x , y)− rh(x , y)| | (x , y) ∈ Gh} = O(h2).

Remark

Despite of the O(h)-approximation around the boundary ∂G , we globally
obtain the second order convergence by multiplying the equations
corresponding to boundary points with h.
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Stability

As for stability, we obtain

Theorem

The matrix Ah is an M. For any rectangle (a, b)× (c , d) ⊃ Ḡ , there
exists a positive vector eh = e|Gh

∈ RGh with

e(x , y) = (x − a)(b − x) + (y − c)(d − y), (x , y) ∈ R2,

which satisfies
Aheh ≥ ρeh

with ρ := 16
(b−a)2+(d−c)2 > 0 if h > 0 is sufficiently small.

Ah satisfies the stability estimate

‖u‖L∞(Gh) ≤
1

ρ
‖Ahu‖L∞(Gh) for any u ∈ RGh

for sufficiently small h > 0.
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Semilinear Problems

Our techniques can easily be applied to a semilinear problem of the form

−∆u(x , y) = f (x , y , u(x , y)), (x , y) ∈ G .

Discretizing the Laplacian as before, we obtain the following finite
difference scheme

Au = G (u), u ∈ RGh

with the diagonal field

(G (u))(x , y) = g(x , y , u(x , y)) + boundary terms, (x , y) ∈ Gh.

The resulting is usually solved with Newton’s method.
For the nonlinear problem, one can also show the consistency as well as
local statbility (in a neighborhood of the actual solution) implying the
local convergence.
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Weak Formulation

Again, as a model problem we consider the Poisson equation

−4u = f in G , u = g in ∂G ,

In contrast to finite elements, we are now looking for a numerical
approximation to the weak solution of our problem. For the sake of
simplicity, we restrict ourselves to the Hilbert space situation.
Consider the block operator(

A
B

)
: H1(G )→ H−1(G )× H1/2(∂G ), u 7→

(
−4u
u|∂G

)
.

(Note: H−1(G ) =
(
H1

0 (G )
)′

). With this notation, the Poisson equations
rewrites as

Au = f , Bu = g .
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Weak Formulation – Cnt’d

For numerical method, the so-called variational formulation is usually
preferable. Taking into account that u ∈ H1(G ), for any test function
ϕ ∈ D(G ), we get in the sense of distributions

[−4u](ϕ) =

∫
G

u4ϕdx = −
∫
G

∇u · ∇ϕdx .

By a standard continuity and density argument, the latter is true for any
ϕ ∈ H1

0 (G ).
Hence, the variational formulation of Poisson equation reads as: Find a
function u ∈ H1(G ) with u|G = g (note that the trace operator is
well-defined) such that∫

G

∇u · ∇vdx = 〈u, v〉H−1(G);H1
0 (G) for any v ∈ H1

0 (G ).

If g is trivial, the integral on the left-hand side can be viewed as a
bilinear form on H1

0 (G )× H1
0 (G ).
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Variational Formulation

By the virtue of classical Sobolev extension theorems, g ∈ H1/2(G ) can
be continuously extended to an element of H1(G ). This way, if u denotes
the weak solution of Poisson equation, u − g satisfies H1

0 (G ). The weak
formulation further implies∫

G

∇u · ∇vdx = 〈f , v〉H−1(G);H1
0 (G)

and, therefore,

a(u − g , v) = −a(g , v) + 〈f , v〉H−1(G);H1
0 (G)

with the bilinear form

a(u, v) :=

∫
G

∇u · ∇vdx .

With the bilinear form being coercive due to Poincaré inequality and the
right-hand side being a continuous linear functional, u − g is uniquely
and continuously computable in terms of g . Therefore, u can also
explicitly be computed.

Michael Pokojovy — Numerical Analysis of PDE and SDE 31/87



Operator Equations Stationary PDE Time-Dependent PDE Stochastic Differential Equations

Variational Formulation – Cnt’d

Both the weak and the variational formulations are equivalent. And we
have the following result.

Theorem

Let g ∈ H1/2(G ), f ∈ H−1(G ). Then there exists a unique weak solution
u ∈ H1(G ) to Poisson equation.

The variational formulation is the commonly used in numerical literature.
Usually, it is also prefered not to distinguish the weak and variational
formulation. Besides, the problems arising from extending g onto G are
subtly “overlooked.”
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Ritz & Galerkin Method

The Ritz & Galerkin method is based on the variation formulation of Poisson equation and the
separability of underlying Hilbert spaces.
The basic idea is the following:

1 Select a finite dimensional subspace V ⊂ H1
0 (G) represented by a basis {v1, . . . , vn}

2 Approximate the numerical solution as

u = g +
n∑

k=j

cjvj ,

where g is an H1-extension of g onto G .

3 Now, computing u is equivalent to determining the ci coefficients

4 Plugging the Galerkin ansatz into the weak formulation and taking into account that it
suffices to require the variational equation only to hold on the basis, we get

n∑
j=1

a(vi , vj )cj = −a(g , vi ) + 〈f , vi 〉H−1(G);H1
0

(G)
for i = 1, . . . , n,

which is now “just” a linear algebraic system for ci ’s, i.e.,

Ac = r (A stiffness matrix, r load vector).

5 Let V “converge” to H1
0 in the sense that infv∈V ‖u − v‖ → ∞ for any u ∈ H1

0 (G)
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Finite Elements

In contrast to analytical studies, where the basis functions vj ’s are
selected as the eigenfunctions of Laplacian, a fundamentally different
approach is typically used in numerical analysis. Indeed, selecting vj as an
eigentfunction or any other function supported on the whole set of G ,
makes the stiffness matrix full or non-spare. Hence, it can be wise choice
is to select vj ’s in such a way that A is a sparse matrix (i.e., with lots of
zeros). This also reflects the locality of underlying PDE. The set of vj ’s is
then referred to as a finite element space.

Remark

There are situations where making A sparse is not the optimal strategy.
Within the framework of model reduction (cf. POD techniques), one
prefers A to be low-dimensional, but typically not sparse.
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Triangulation

We present a common approach to constructing finite element spaces.
First, a triangulation GTh

of the domain G is computed. For the
triangulation to be admissible, the intersection between any two triangle
needs either to be empty or consist of a vertex/node or an edge.

Ω

ΩTh
= ∪e∈Eh

e
h

Figure: Triangulation
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Triangulation – Cnt’d

admissible not admissible Friedrichs-Keller
triangulation

Figure: Sample triangulations

The finite element space is then selected as

VTh
= {u ∈ C(GTh

) | u is a polynomial of deg(u) ≤ r in x and y

on any triangle e ∈ Th and u = 0 on ∂GTh
}.

r = 1: linear elements

r = 2: quadratic elements

etc.

We will only discuss linear finite elements.
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Linear Finite Elements

Let Pi , i = 1, . . . ,M are the numbered nodes of GTh
, where the nodes

that do not lie on ∂G are exaclty the Pi ’s, i = 1, . . . ,m for m < M.

P1
P2

P3

P4

P5

P6 P7

P8

P9

P10
P11

P12

P13

@@I GTh

� G

Figure: Node numeration, M = 13, m = 4

The functions ui , i = 1, . . . ,M are defined on GTh
via

ui (Pj) = δij , 1 ≤ i , j ≤ M,

u is linear in x and y on each e ∈ Eh, u ∈ C (GTh
).

One can easily show that this interpolation problem is uniquely solvable.
The resulting functions ui , i = 1, . . . ,M satisfy ui ∈ H1(G ) and are
referred to as form functions.
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Finite Element Ansatz

Pi

supp(ui )@@I

ui (Pj) = δij

Figure: Support supp(ui ) of a form function ui

We let

u0 :=
M∑

j=m+1

g(Pj)uj ,

where we recall Pm+1, . . . ,PM ∈ ∂Ω, and obtain

u0(Pi ) =
M∑

j=m+1

γ(Pj) uj(Pi )︸ ︷︷ ︸
=δij

= γ(Pi ), i = m + 1, . . . ,M.
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Finite Element Ansatz – Cnt’d

The resulting ansatz reads as

ũ = u0 +
m∑
j=1

cjuj =
M∑
j=1

cjuj

with cj = g(Pj) for j = m + 1, . . . ,M.
The ci coefficient corresponds then to the value of ũ at the node Pi ,
i = 1, . . . ,M since

ũ(Pi ) =
M∑
j=1

cj uj(Pi )︸ ︷︷ ︸
=δij

= ci , i = 1, . . . ,M.

The unknowns are c1, . . . , cm, while the coefficients cm+1, . . . , cM are known.

Remark

It should be pointed out that u0 does not belong to H1(G) in the limit as Ritz
& Galerkin method requires. This problem is usually “overlooked” in most
numerical literature.
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Assembling Procedure

Hence, we obtain the following system of linear algebraic equations

Aij =

∫
G

∇uj · ∇ui d(x, y), 1 ≤ i, j ≤ m,

ri = −
∫
G

(∇u0 · ∇ui − fui ) d(x, y), 1 ≤ i ≤ m.

Computing A and r is commonly referred to as assembling.
We replace G with GTh

and f with

fTh =
m∑
j=1

f (Pj )uj

and, taking into account u0 =
∑M

j=m+1 g(Pj )uj , obtain

Aij =

∫
GTh

∇ui · ∇uj d(x, y), 1 ≤ i, j ≤ m,

ri =

∫
GTh

fThui −∇u0 · ∇ui d(x, y)

=
m∑
j=1

f (Pj )

∫
GTh

uiuj d(x, y)−
M∑

j=m+1

g(Pj )

∫
GTh

∇uj · ∇ui d(x, y), i = 1, . . . ,m.

Michael Pokojovy — Numerical Analysis of PDE and SDE 40/87



Operator Equations Stationary PDE Time-Dependent PDE Stochastic Differential Equations

Assembling Procedure – Cnt’d

Since the integrals over GTh
can be writtten as a sum of integrals over respective triangles e ∈ Th,

i.e., ∫
ΩTh

f (x, y) d(x, y) =
∑
e∈Eh

∫
e

f (x, y) d(x, y),

we only need to compute∫
e

∇ui · ∇uj d(x, y),

∫
e

uiuj d(x, y), 1 ≤ i, j ≤ M.

This can be done using the so-called isoparametric principle briefly described next.

Let e ∈ Th be an arbitrary triangle with edges Pi1, Pi2, Pi3.

Pi1 = (x1, y1) Pi2 = (x2, y2)

Pi3 = (x3, y3)

Figure: Triangle e along with its edges Pi1, Pi2, Pi3
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Computing the Integrals

Only the following integrals are different from zero: Sjk =
∫
e ∇uij · ∇uik d(x , y),

k, j = 1, 2, 3.
When assembling A, the symmetric matrix Se = (Sjk )1≤j,k≤3 ∈ R3,3 needs to be
added up to the submatrix  Ai1,i1 Ai1,i2 Ai1,i3

Ai2,i1 Ai2,i2 Ai2,i3

Ai3,i1 Ai3,i2 Ai3,i3

 .

We obtain

Se =
1

2 · Fe
CeC

T
e with Ce =

 y2 − y3 x3 − x2

y3 − y1 x1 − x3

y1 − y2 x2 − x1

 ∈ R3,2

and Fe = |e| = (x2 − x1)(y3 − y1)− (x3 − x1)(y2 − y1). Here, Fe is the area of triangle
e with the edges Pi1, Pi2, Pi3.
The second integral is given via the matrix Me ∈ R3,3 with

(Me)jk =

∫
e
ujk · uik d(x , y), 1 ≤ j , k ≤ 3, Me =

Fe

24

 2 1 1
1 2 1
1 1 2

 ∈ R3,3.
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Convergence Analysis

For the sake of simplicity, we let g ≡ 0 and f ∈ L2(G). We consider the
following numerical scheme: Find uh ∈ Vh such that

a(uh, v) = f (v) ∀v ∈ Vh with f (v) = 〈f , v〉H−1(G);H1
0 (G)

for a finite dimensional subset Vh ⊂ V . Let ū denote the solution to original
PDE. Then e := u − uh is the resulting error and we have the error equation

a(e, v) = 0 ∀v ∈ Vh.

Lemma (Approximation Lemma)

Let Vh ⊂ V be a subspace of V , a(·, ·) an inner product on V and
‖u‖a =

√
a(u, u) the resulting norm. Then for any uh ∈ Vh, we have

a(u − uh, v) = 0 ∀v ∈ Vh,

which, in its turn, is equivalent with

‖u − uh‖a = inf{‖u − v‖ | v ∈ Vh}.
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Convergence Analysis – Cnt’d

Lemma

The solution uh to Galerkin equation a(u, v) = b(v), ∀v ∈ Vh is stable in
the sense of estimate

‖uh‖L2(G) ≤
1

α
‖b‖V ′

for any h > 0, where

‖b‖V ′ = sup

{
|b(v)|
‖v‖L2(G)

∣∣∣∣ v ∈ V , v 6= 0

}
.

Theorem (Cea’s Lemma)

For the solution of Galerkin equation, we have

‖u − uh‖L2(G) ≤
M

α
· inf{‖u − v‖L2(G) | v ∈ Vh}.
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Convergence Analysis – Cnt’d

By the virtue of Cea’s lemma, the convergence is now only determined by the
approximation quality inf{‖u − v‖ | v ∈ Vh}.
For linear elements, we get

‖u − uh‖H1(G) ≤ (1 + C2) · inf{‖u − v‖H1(G) | v ∈ VTh
} ≤ (1 + C2)‖u − w‖H1(G)

for any w ∈ VTh
. Using interpolation, an appropriate w can be constructed. For the

latter, one can show

‖w)− v‖H1(G) ≤ C · h ∀v ∈ H2(Ω)

if (Th)0<h<h1
is a triangulation family on G for which the maximal angle γh,max in

each triangle e ∈ Th satisfies

γh,max ≤ γmax < π for 0 < h ≤ h0.

The latter is called the maximal angle condition.

Theorem (Convergence)

Under the maximal angle condition, we have

‖u − uh‖L2(G) ≤ C̃ · h · ‖u − uh‖H1(G) ≤ C̃ Ĉh2, 0 < h ≤ h0,

if ū ∈ H2(G).
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Physical Model

Let G ⊂ Rd be a domain with a Lipschitz-boundary ∂G and T > 0 be a fixed number.
Let a function θ : [0,T ]× Ḡ → R denote the temperature measured with respect to a
reference temperature θ0 and let q : [0,T ]× Ḡ → Rd be the heat flux at a material
point x ∈ Ḡ at time t ∈ [0,T ]. With ρ : Ḡ → (0,∞) denoting the specific density and
cρ : Ḡ → (0,∞) denoting the specific heat capacity, the energy conservation law reads
as

ρ(x)cρ(x)∂tθ(t, x) + div q(t, x) = h(t, x) for t ∈ (0,T ), x ∈ G ,

where h stands for the intensity of external heat sources.
To close this equation, a material law postulating a relation between the temperature
and the heat flux is required. The classical way to do this consists in using Fourier’s
law of heat conduction stating

q(t, x) + λ(x)∇θ(t, x) = 0 for t ∈ (0,T ), x ∈ G ,

where λ : Ω̄→ (0,∞) denotes the heat conductivity being a material property. Finally,
this leads to the classical parabolic heat equation

ρ(x)cρ(x)∂tθ(t, x)− div
(
λ(x)∇θ(t, x)

)
= h(t, x) for t ∈ (0,T ), x ∈ G .

Khusainov, D., Pokojovy, M., and Racke, R. Strong and Mild Extrapolated

L2-Solutions to the Heat Equation with Constant Delay. SIAM Journal on
Mathematical Analysis 47.1, 427-454, 2015
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Model Problem

Consider the model problem

ut = uxx + f (u, ux , x , t) in (0, 1)× (0,T ),

u(x , 0) = u0(x) for 0 ≤ x ≤ 1,

u(0, t) = g0(t), u(1, t) = g1(t) for 0 ≤ t ≤ T .

We use the following numerical principle for solving this time-dependent
PDE.

Line method

First discretize with respect to space and then with respect to time.

Next, we illustrate the application of line method to our problem. Here,
we use the finite differencee method for space discretization. It should be
pointed out that the finite element method can be applied similarly.
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Elliptic Problem

Carrying out a finite difference discretization for the respective elliptic
problem

−w ′′(x) = f (x ,w(x),w ′(x)) in (0, 1),

w(0) = g0, w(1) = g1,

we obtain

w(0) = g0,

1

∆x2
(−w(x −∆x) + 2w(x)− w(x + ∆x)) =

= f

(
x ,w(x),

1

2∆x
(w(x + ∆x)− w(x −∆x))

)
,

x = j∆x , j = 1, . . . ,M − 1,

w(1) = g1.
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Elliptic Problem – Cnt’d

Eliminating w(0), w(1), we get a nonlinear algebraic system for the
vector (w(∆x), . . . ,w(1−∆x)) reading as

1

∆x2



2 −1 0 . . . 0 0 0
−1 2 −1 . . . 0 0 0
0 −1 2 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . 2 −1 0
0 0 0 . . . −1 2 −1
0 0 0 . . . 0 −1 2





w(∆x)
w(2∆x)
w(3∆x)

...
w(1− 3∆x)
w(1− 2∆x)
w(1−∆x)



=



f
(
∆x ,w(∆x), 1

2∆x
(w(2∆x)− g0)

)
+ g0

∆x2

f
(
2∆x ,w(2∆x), 1

2∆x
(w(3∆x)− w(∆x))

)
...

f
(
j∆x ,w(j∆x), 1

2∆x
(w((j + 1)∆x)− w((j − 1)∆x))

)
, j = 2, . . . ,M − 2

...
f
(
1− 2∆x ,w(1− 2∆x), 1

2∆x
(w(1−∆x)− w(1− 3∆x))

)
f
(
1−∆x ,w(1−∆x), 1

2∆x
(g1 − w(1− 2∆x))

)
+ g1

∆x2


.
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Elliptic Problem – Cnt’d

The latter system can be written in a compact form as

A∆xw = G∆x(w), w ∈ RG∆x

with

A∆x =
1

∆x2



2 −1 0 . . . 0 0 0
−1 2 −1 . . . 0 0 0
0 −1 2 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . 2 −1 0
0 0 0 . . . −1 2 −1
0 0 0 . . . 0 −1 2


,

G∆x(w) =


f
(
∆x ,w(∆x), 1

2∆x (w(2∆x)− g0)
)

+ g0

∆x2

f
(
j∆x ,w(j∆x), 1

2∆x (w((j + 1)∆x)− w((j − 1)∆x))
)
,

j = 2, . . . ,M − 2
f
(
1−∆x ,w(1−∆x), 1

2∆x (g1 − w(1− 2∆x))
)

+ g1

∆x2

 .
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Semidiscretization in Space

We come back to the original time-dependent PDE and write it as an
ODE for

v(t) = (u(∆x , t), u(2∆x , t), . . . , u(1− 2∆x , t), u(1−∆x , t))

= (v1(t), v2(t), . . . , vM−2(t), vM−1(t)) ∈ RM−1, 0 ≤ t ≤ T

reading as

v ′(t) = −A∆xv(t) + H∆x(v(t)) + r∆x(t)

=: F∆x(v(t), t), 0 ≤ t ≤ T ,

v(0) = v0 = (u0(∆x), . . . , u0((M − 1)∆x)).
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Time Integration

The ODE we obtained above can essentially be discretized using any time
integrator available for ODE. The latter should be done to achieve the
desired consistency order.
For stability and therefore convergence, other aspects are important.
Most difficulties arise from the fact that the ODE under consideration is
a stiff one. Based on whether the time integrator is implicit or explicit,
either conditional or unconditional stability follows. In the former case,
the resulting full discretization is stable only for sufficiently small time
steps related to space steps. Moreover, stability properties may and often
do depend on the selection of topology.
In this lecture, we will use the classical ϑ-method as our time integrator.
Taking particular values of ϑ, we get the following well-known schemes:

ϑ = 0: explicit Euler scheme

ϑ = 1/2: Crank & Nicolson scheme or Simson/trapezoidal rule

ϑ = 1: implicit Euler scheme
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ϑ-Method

For given ∆t = T
N > 0 and v0, let v j approximate v(j∆t), j = 0, . . . ,N.

Selecting ϑ ∈ [0, 1], the ϑ-method reads as

vj+1 = v j + ∆t
[
ϑF∆x(v j+1, tj+1) + (1− ϑ)F∆x(v j , tj)

]
,

j = 0, . . . ,N − 1,

v0 = (u0(x1), . . . , u0(xM−1)).

ci − 1, j ci , j ci + 1, j

ci , j + 1

ci − 1, j ci , j ci + 1, j

ci , j + 1c
i − 1, j + 1

c
i + 1, j + 1

c
i − 1, j + 1

ci , j
c

i + 1, j + 1
ci , j + 1

ϑ = 0 ϑ = 1
2 ϑ = 1

Figure: Difference schemes for various ϑ values
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Feasibility

For ϑ 6= 0, implementing ϑ-method makes it necessary to solve a system
of nonlinear algebraic equations at each time level. The following result
holds true.

Theorem

Let f ∈ C 1(R× [0, 1]× [0,T ],R) and∣∣∣∣∂f∂u (u, x , t)

∣∣∣∣ < µ

for u ∈ R, 0 ≤ x ≤ 1 und 0 ≤ t ≤ T . The implicit ϑ-scheme (ϑ > 0)

v j+1 = v j +∆t ·
[
ϑF∆x(v j+1, tj+1) + (1− ϑ)F∆x(v j , tj)

]
, j = 0, . . . ,N−1

can be resolved for v j+1 at any time level tj = j∆t for all ∆t satisfying
ϑµ∆t < 1.
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Consistency

First, we write the fully discrete problem as

T h(u) = 0, u ∈ RGh , T h : RGh −→ RGh ,

where we selected h = (∆x,∆t) and ∆x = 1
M , ∆t = T

N and introduced (after slightly changing
the notation) the space-time lattice

Gh = {(xi , tj ) = (i∆x, j∆t) | i = 1, . . . ,M − 1, j = 0, . . . ,N}.

For u ∈ RGh , we have

u = (u0
1 , . . . , u

0
M−1, . . . , u

1
1 , . . . , u

1
M−1, u

N
1 , . . . , u

N
M−1),

uj
i = u(xi , tj ) = u(i∆x, j∆t), i = 1, . . . ,M − 1, j = 0, . . . ,N.

Now, T h(u) = 0 can explicitly be written as

(T h(u))ji =



u0
i − u0(xi ),

{
j = 0,
i = 1, . . . ,M − 1,

1
∆t

(
uj
i − uj−1

i

)
−ϑ
[

1
∆x2

(
uj
i−1 − 2uj

i + uj
i+1

)
+ f (uj

i , xi , tj )
] {

j = 1, . . . ,N,
i = 1, . . . ,M − 1,

−(1− ϑ)
[

1
∆x2

(
uj−1
i−1 − 2uj−1

i + uj−1
i+1

)
+ f (uj−1, xi , tj−1)

]
where

uj
0 = g0(tj ), uj−1

0 = g0(tj−1), uj
M = g1(tj ), uj−1

M = g1(tj−1).
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Consistency – Cnt’d

Using classical Taylor analysis, we obtain the following consistency result.

Theorem

For ϑ ∈ [0, 1], the ϑ-method for heat equation is consistent of order 1 in
∆t and order 2 in ∆x w.r.t. ‖ · ‖∞-norm, i.e.,

‖T h(ūh)‖∞ = O(∆t + ∆x2)

for any classical solution ū satisfying ∂ν ū
∂tν ∈ C (Ḡ ), ν = 1, 2, ∂ν ū

∂xν ∈ C (Ḡ ),
ν = 0, 1, 2, 3, 4.
For the Crank & Nicolson scheme, i.e., ϑ = 1

2 , the error is even of order

O(∆t2 + ∆x2) if one additionally has ∂3ū
∂t3 ∈ C (Ḡ ).
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Stability

Recall that the scheme is stable if

‖u − v‖ ≤ C‖T h(u)− T h(v)‖, ∀u, v ∈ RGh , 0 < h ≤ h0, h = (∆x ,∆t).

We skip all stability proofs here. The idea is maily based on Hille &
Yosida-type estimates for the associated discrete semigroups.

Theorem (L∞-stability)

Under the condition
∆t

∆x2
≤ 1

2(1− ϑ)
,

the ϑ-scheme for the heat equation is ‖ · ‖∞-stable on RGh , i.e.,

‖u − v‖∞ ≤ (1 + T )‖T h(u)− T h(v)‖∞, ∀u, v ∈ RGh , h = (∆x ,∆t).
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Stability – Std’d

‖ · ‖∞-stability domain

0

EEC

1
2

Crank & Nicolson

1 ϑ

IEC

1
2

1

∆t
∆x2

Figure: ‖ · ‖∞-stability
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Convergence

Now, using Lax’ principle, we get the L∞-convergence.

Theorem

Under the conditions ∆t
∆x2 ≤ 1

2(1−ϑ)
and ϑµ∆ < 1, the ϑ-method with 0 ≤ ϑ ≤ 1 is

convergent with respect to the L∞-norm of order 1 in ∆t and order 2 in ∆x for any
classical solution ū to the heat equation satisfying ∂ν

∂tν
ū ∈ C(G), ν = 1, 2,

∂ν

∂xν
ū ∈ C(G), ν = 0, 1, 2, 3, 4, G = (0, 1)× (0,T ), i.e.,

max{|u(xi , tj )− uh(xi , tj )| | i = 1, . . . ,M − 1, j = 0, . . . ,N} ≤ C · (∆t + ∆x2),

where uh stands for the solution of T h(u) = 0. For the Crank & Nicolson scheme,

max{|u(xi , tj )− uh(xi , tj )| | i = 1, . . . ,M − 1, j = 0, . . . ,N} ≤ C(∆t2 + ∆x2)

if we additionally have ∂3

∂t3 ū ∈ C(Ḡ).

Remark (L2-stability & convergence)

If we consider the L2-norm instead of the L∞-one, one can show that the Crank &
Nicolson scheme is unconditionally stable and convergent for ϑ ∈ [ 1

2
, 1], i.e., the time

and space steps can be selected independently.
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Physical Model

Recall the Lamé system at the beginning of the talk. In the absense of
external force terms, its dynamic version reads as

ρUtt − div σ(∇U) = 0 in (0,∞)× G .

Here, U : (0,∞)× G → Rd is the unknown displacement field and ρ > 0
denotes the material density. Assuming the strain tensor to be linear, we
obtain the classical equations of homogenenous isotropic elastodynamics

ρUtt − µ4U − (λ+ µ)∇ divU = 0.

Now, if we assume the vector field to be solenoidal (i.e., divU = 0), we
get

ρUtt − µ4U = 0.

Taking any of the d-components of this PDE system, we arrive at the
classical scalar wave equation.
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Model Problem and Discretization

We consider the following model problem

utt = c2uxx + f (ux , u, x , t), 0 ≤ x ≤ 1, 0 ≤ t ≤ T ,

u(x , 0) = u0(x), ut(x , 0) = u1(x), 0 ≤ x ≤ 1,

u(0, t) = g0(t), u(1, t) = g1(t), 0 ≤ t ≤ T .

Introducing an equidistant lattice on the space-time cyllinder [0, 1]× [0,T ]

Gh = {(i∆x , j∆t) | i = 1, . . . ,M − 1, j = 0, . . . ,N},

∆x =
1

M
, ∆t =

T

N
, h = (∆x ,∆t)

and applying the method of lines to the finite difference semidiscretization in space,
we obtain the following numerical scheme similar to the ϑ-scheme for heat equation

1

∆t2

(
uj+1
i − 2uji + uj−1

i

)
= ϑσj+1

i + (1− 2ϑ)σj
i + ϑσj−1

i , ϑ ∈
[
0, 1

2

]
with

σj
i =

c2

∆x2

(
uji−1 − 2uji + uji+1

)
+ f

(
1

2∆x

(
uji+1 − uji−1

)
, uji , xi , tj

)
,

where xi = i∆x , tj = j∆t.
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Model Problem and Discretization – Cnt’d

For j = 0, we trivially set

u0
i = u0(xi ), i = 1, . . . ,M − 1.

Further, we let

uj0 = g0(tj), ujM = g1(tj), j = 0, . . . ,N.

To obtain an equation for u1
i , we use the following second order

approximation

u(x ,∆t)− u(x , 0)

∆t
= ut(x , 0) +

1

2
∆t · utt(x , 0) + O(∆t2).

Taking into account

ūtt(x , 0) = c2ūxx(x , 0) + f (ūx , ū, x , 0) = c2u′′0 (x) + f (u′0, u0, x , 0)

with the classical solution ū to the wave equation, we can write

1

∆t

(
u1
i − u0

i

)
= u1(xi ) +

∆t

2

(
c2u′′0 (xi ) + f (u′0(xi ), u0(xi ), xi , 0)

)
for i = 1, . . . ,M − 1.
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Graphical Illustration
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Compact Notation

In a compact form, our numerical scheme can be written as

T h(u) = 0

with T h : RGh −→ RGh ,

(T h(u))ji =


u0
i − u0(xi ), j = 0, i = 1, . . . ,M − 1

1
∆t

(
u1
i − u0

i

)
− u1(xi )− ∆t

2

[
c2u′′0 (xi ) + f (u′0(xi ), u0(xi ), xi , 0)

]
,

j = 1, i = 1, . . . ,M − 1
1

∆t2

(
uj
i − 2uj−1

i + uj−2
i

)
−
[
ϑσj

i + (1− 2ϑ)σj−1
i + ϑσj−2

i

]
,

j = 2, . . . ,M, i = 1, . . . ,M − 1

 ,

where

σj
i =

c2

∆x2

(
uj
i−1 − 2uj

i + uj
i+1

)
+ f

(
1

2∆x

(
uj
i+1 − uj

i−1

)
, uj

i , xi , tj

)
.
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Consistency

Standard Taylor analysis yields:

Theorem

For any solution ū ∈ C 4([0, 1]× [0,T ]) to the wave equation, the
parameter-dependent scheme is consistent of order O(∆t2 + ∆x2) if f ist
smooth and Lipschitzian w.r.t. x .
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Iteration Form

For the sake of simplicity, let f ≡ 0. Introducing the following notation

v(t) = (u(x1, t), . . . , u(xM−1, t)), v j = v(tj) = v(j∆t),

Γ =
c2

∆x2



2 −1 0 . . . 0 0 0
−1 2 −1 . . . 0 0 0
0 −1 2 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . 2 −1 0
0 0 0 . . . −1 2 −1
0 0 0 . . . 0 −1 2


, r j =

c2

∆x2



g0(tj)
0
0
...
0
0

g1(tj)


,

our iterative scheme can be written as

1

∆t2

(
v j+1 − 2v j + v j−1

)
= ϑ

(
−Γv j+1 + r j+1) + (1− 2ϑ)(−Γv j + r j)

+ϑ(−Γv j−1 + r j−1), j = 1, . . . ,N − 1.
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Iteration Form – Cnt’d

Equivalently, the scheme reads as(
1

∆t2
I + ϑΓ

)
v j+1 =

1

∆t2

(
2v j − v j−1

)
+ ϑr j+1 + (1− 2ϑ)(−Γv j + r j)

+ϑ(−Γv j−1 + r j−1), j = 1, . . . ,N − 1

with starting values

v0 = (u0(x1), . . . , u0(xM−1)),

1

∆t
(v1 − v0) = (u1(x1), . . . , u1(xM−1)) +

∆t

2
c2(u′′0 (x1), . . . , u′′0 (xM−1)).

The iteration structure suggests that the invertibility of matrix

A =
1

∆t2
I + ϑΓ,

is crucial for the iteration to be resolvable at every time step. Note that
A is obviously an M-matrix.
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Stability

For stability analysis, we only consider the case ϑ = 0 corresponding to the
explicit Euler & Cauchy scheme.
The numerical solution uj

i approximating ū(xi , tj) depends on the initial data
u0
i−j , u

0
i−j+1, . . . , u

0
i+j . We call the interval [(i − j)∆x , (i + j)∆x ] = [xi−j , xi+j ]

the numerical dependence interval at point (x∗, t∗) = (xi , tj). (In multiple
dimensions, one usually speaks of a numerical dependence ball.)

The figure below shows the so-called numerical hyperbolic cone containing all

points on the space-time grid which affect the numerical approximation uj
i .

p p p p p p p p pp p p p p p pp p p p pp p ppt

x
xi−j = (i − j)∆x xi = i∆x xi+j = (i + j)∆x

j∆t = t∗

∆x

∆t

(x∗, t∗)

Figure: Numerical hyperbolic cone
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Stability

Due to the final signal propagation speed correponding to solutions of the
wave equation, analytic counterparts of the numerical dependence
interval and the numerical hyperbolic cone can similarly be defined for
the original hyperbolic PDE.
Obviously, if the numerical hyperbolic cone is smaller than the analytic
one, the data outside of the numerical hyperbolic cone have no influence
on the numerical solution whereas the latter is the case for the continuous
PDE. Therefore, no consistency and/or stability can be expected.
This motivates the following:

Courant-Friedrichs-Levy or CFL condition

The numerical dependence interval must be contained in the analytic
dependece interval, which is equivalent to the step condition

c∆t ≤ ∆x .
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Stability

Under the CFL condition, one can use discrete Fourier analysis or energy
techniques to prove:

Theorem (Stability)

The explicit Euler scheme for the wave equation is stable in the L2-norm w.r.t
x and L∞-norm w.r.t. t.

Corollary

Assume the wave equation possesses a unique solution

ū ∈ C 4([0, 1]× [0,T ]).

Then the explicit Euler scheme (ϑ = 0) is convergent w.r.t. to the norm

‖u‖2,∞ = max

{∣∣∣∣M−1∑
i=1

(uj
i )

2

∣∣∣∣1/2 ∣∣∣∣ j = 0, . . . ,N

}
.

of order 2 both in x and t if the CFL condition is satisfied.
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Merton’s Portfolio Problem

Consider an investor who is planing his and her investment strategy over
a finite time horizon [0,T ]. His or her wealth St at time t is assumed to
be random. At time t, the investor must decide the amount ct of his or
her wealth to consume and the fraction πt to invest in a stock market,
whereas the remaining fraction 1− πt is invested in a risk-free asset (e.g.,
a bond).
With r denoting the interest rate from the risk-free asset, µ and σ
standing for the trend/exptected return and volatility of the financial
market and (Wt)t≥0 being a standard Wiener process, the equation for
investor’s wealth development reads as

dSt =
(
(r + πt(µ− r))St − ct

)
dt + Stπtσ dWt , (∗)

where ξ is investor’s initial wealth (which can be random).
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Merton’s Portfolio Problem – Cnt’d

Equation (∗) is a stochastic differential equation (SDE). The differentials
appearing in this equation cannot be interpreted classically. Indead,
neither St nor Wt are classical differentiable (at most Hölder-continuous
of degree α ∈ (0, 1

2 )). Thus, after applying Itô integration procedure, an
ODE is usually interpreted as a stochastic integral equation. Unlike ODE,
the solution one is looking for is a random process. Therefore,
measurability and adaptedness issues are very important here.
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Merton’s Portfolio Problem – Cnt’d

Typical questions that arrise are:

Find the random process solving the SDE or compute some
function(al)s depending on the solution process, e.g., E

[
f (ST )

]
, etc.

For a given utility function u : [0,∞)→ [0,∞), under appropriate
restrictions on consumption and investment, find an optimal
consumption/investment strategy (“portfolio”) to maximize some
functional, e.g.,

E

[∫ T

0

e−ρsu(Ss)ds + e−ρTu(ST )

]
etc.

Merton, R. C. Optimum consumption and portfolio rules in a
continuous-time model. Journal of Economic Theory 3 (4), 1971
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Itô Integral

We assume the audience to be familiar with basic stochastic process theory.
We only remind of the two following seminal concepts. Let (Ω,F ,P) be a
probability space.

Let (Wt)t≥0 be a Wiener process adapted to its natural filtration (F)t≥0 and
let H be a random process adapted to the same filtration such that Ht ∈ Lp

w.r.t. t P-a.s. for some p ∈ [1,∞). The Itô integral is then given as∫ T

0

HtdWt := lim
n→∞

∑
[ti−1,ti ]∈πn

Hti−1 (Wti −Wti−1 ),

where πn denotes a partition of [0,T ] with its diameter going to zero and the
approximation of Ht by a sequence of step processes converges in probability in
Lp w.r.t. to t. Note that in contrast to classical Stiltjes integral, Wt has
unbounded variation P-a.s.

One can show that the Itô integral is well-defined as an FT -measurable random
variable. In L2, one has the so-called Ito isometry

E

[(∫ t

0

Hs dWs

)2
]

= E

[∫ t

0

H2
s ds

]
.
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Itô’s Rule

For a Brownian motion (Wt)t≥0, consider the random process given by

Xt = X0 +

∫ t

0
σs dWs +

∫ t

0
µs ds,

where σ is predictable and (Wt)t≥0-integrable and µ is predictable and
Lebesgue-integrable.
Then we have the famous Itô’s lemma.

Lemma (Itô’s Rule or Stochastic Chain Rule)

There holds

df (t,Xt) =
∂f

∂t
dt + (∇f (Xt)

T dXt +
1

2
(dXt)

T (∇2f ) dXt ,

=

(
∂f

∂t
+ (∇f )Tµt +

1

2
tr[σT

t (∇2f )σt ]

)
dt + (∇f )Tσt dWt

for any f ∈ C2.

Note that this equation differs from the standard chain rule due to the additional term

involving the second derivative of f , which comes from the property that Brownian

motion has non-zero quadratic variation.
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Existence & Uniqueness for SDE

Let A,B ∈ C ([0,T ]× Rd), (Ft)t≥0 be a Wiener process adapted to a
σ-algebra filtration (Ft)t≥0 and ξ be an F0-measurable r.v. Consider the
SDE (Ft)t≥0-adapted process (Xt)t≥0

dXt = A(t,Xt)dt + B(t,Xt)dWt , X0 = ξ

or, equivalently,

Xt = ξ +

∫ t

0

A(s,Xs)ds +

∫ t

0

B(s,Xs)dWs P− a.s. for any t ∈ [0,T ].

Note that the solution is P-a.s. path-continuous.
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Existence & Uniqueness for SDE – Cnt’d

Theorem

Let

A,B are continuous on [0,T ]× Rd ,

|A(t, x)| ≤ K (1 + |x |), |B(t, x)| ≤ K (1 + |x |) for t ∈ [0,T ], x ∈ Rd ,

A,B are Lipschitzian w.r.t. x uniformly in t ∈ [0,T ],

ξ has a finite variance.

Then the SDE possesses a unique solution on [0,T ]. Moreover, the
variance of Xt is finite for every t ∈ [0,T ].
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Euler-Maruyama Scheme

One of the most popular solution approaches for SDE are finite difference
schemes. A typical example is given by Euler-Maruyama scheme being a
probabilistic counterpart of Euler scheme. In contrast to Runge-Kutta
schemes, etc. used for deterministic ODE, finite difference schemes must
be compatible with Itô’s rule.
Consider an SDE

dXt = A(t,Xt)dt + B(t,Xt)dWt for t ∈ [0,T ], X0 = ξ.

For a step value h = T
N with N ∈ N, we define an equidistant lattice

{t0, . . . , tN} with tn = nh. Denoting with X̂tn the approximation for Xtn ,
the Euler-Maruyama scheme reads as

X̂tn+1 = X̂tn + A(tn, X̂tn)h + B(tn, X̂tn)∆Wtn , X̂0 = ξ

with the Brownian motion increments 4Wtn = Wtn+1 −Wtn ∼ N (0, 1).
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Strong Convergence

Applying Itô’s rule along with a discrete Gronwall inequality, we get:

Theorem

There exists a constant C > 0 such that for any h > 0

max
0≤tn≤T

E
[
|Xtn − X̂tn |

]
≤ Ch1/2

if A,B are C 2 functions which are bounded together with their
derivatives up to order 2.

In contrast to the deterministic case, the convergence order is 1
2 and not

1 as it is the case for explicit Euler scheme.
Since we do not know the actual expectation in practice, E[·] is
estimated by the sample mean. By the virtue of Central Limit Theorem,
reliable confidence intervals can be obtained.

Michael Pokojovy — Numerical Analysis of PDE and SDE 81/87



Operator Equations Stationary PDE Time-Dependent PDE Stochastic Differential Equations

Weak Convergence

For the weak convergence, not the discrepancy between Xt and X̂t but the one
between some “test functionals” depending on these random variables is estimated.

Theorem

For any test function

g ∈ C4(Rd ,Rd ) with polynomial growth,

there exists a constant C > 0 such that for any h > 0

max
0≤tn≤T

E
[
|g(Xtn )− g(X̂tn )|

]
≤ Ch

if A,B are bounded C2-functions will bounded derivatives up to order 2.

Though the weak convergence order is 1 and thus is higher than the strong one, weak

approximation does not imply any proximity between the numerical paths and the

actual ones. It only guarantees that the distributions (on the space of continuous

functions) are similar.
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Weaker Convergence – Cnt’d

At the same time, if not the whole solution process (Xt)t but only, say,
g(XT ) or E[XT ] need to approximated, the weak convergence is
appropriate.
Recall Merton’s portfolio problem considered before. If we only want to
compute the value of utility functional depending our investment strategy
(and the functional is regular), we get a higher convergence rate than the
strong one.
A typical example in financial mathematics is options princing. Given a
pay-off function, we can use Euler-Maruyama scheme to compute the
strike/excercise price for

American put or call options

European put or call options

Asian put or call options

etc.

or evaluate various portfolio values, etc.
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Option Pricing

Given a simple market model

dSt = rSt + σStdSt , St = s nonrandom

for the stock price St as well as a strike function, we want to compute
the discounted option price at time T

E
[

exp(−r(T − t)St
]
.

As we already pointed out, one can use the Euler-Maruyama scheme to
perform a Monte-Carlo simulation to estimate the option price. An
alternative idea is based on Fokker-Planck equation establishing a
connection between SDE and parabolic PDE.
Note that solutions to SDE are Markovian processes. Therefore, under
appropriate regularity assumptions, they possess infitesimal generators
and can be interpreted in terms of semigroup or Kato theory.
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Fokker-Planck Equation

Assume we are given (for simplicity) a 1D SDE

dXt = a(t,Xt)dt + b(t,Xt)dWt for t ∈ [0,T ], X0 = ξ.

The solution process is assumed to possess a time-dependent density
function ψ = ψ(t, x). Then we can write

E[g(Xt)] =

∫
R
g(x)ψ(t, x)dx .

Applying Itô’s rule, one can show under appropriate conditions that

ψt + (aψ)x − 1
2 (b2ψ)xx in (0,T )× R, ψ(0, ·) = fξ,

where fξ is the pdf of ξ (fξ is a delta-function if ξ is fixed.)
Thus, instead of applying Euler-Maruyama scheme, we can use a
numerical procedure to solve the parabolic Fokker-Planck PDE and then
estimate E[g(Xt)] based on the numerical approximation of density
function. Severe problems (“curse of dimensionality”) arise though when
the process (Xt)t≥0 is multidimensional.
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Thank you for your attention!
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