Please read the following instructions carefully

- In order to secure full credit, please show all the working.
- You may work in groups but the assignments have be written by yourself.

1. Bound the error in using $p_{4}(x)$ to approximate e^{-x} about $a=0$ on $[-1,1]$ with the Taylor's remainder.
2. Let $p_{n}(x)$ be the Taylor polynomial of degree n of the function:

$$
f(x)=\log (1-x) \text { about } a=0
$$

(a) How large should n be to have $\left|f(x)-p_{n}(x)\right| \leq 10^{-4}$ for $-0.5 \leq x \leq 0.5$?
(b) Does this choice of n change if x lies between $[-1,0.5]$?
3. For each of the following functions $f(x)$ and choice of approximation point $a=0$, please generate the Taylor polynomials of degree 1, 2 and 3 .
(a) $f(x)=\sqrt{x+1}$,
(b) $f(x)=\log (1+x)$,
(c) $f(x)=e^{\cos x}$.

Use the Matlab commands plot, hold on, legend to generate the plots of each of the three functions $f(x)$ and the three polynomials superimposed on the Matlab plot. Your plot must have a title 'Plot 01', 'Plot 02' and 'Plot 03' and the legend indicating the three polynomials p1, p2 p3. Please turn in a printout of each of the three plots.
4. Assuming the format short, in Matlab, use the Matlab command rand(1) to generate a random number between 0 and 1 . Call this variable n . Multiply n by 100 so that n is of the form $\mathrm{xx} . \mathrm{xx}$.
Perform the following tasks:
(a) Find the binary floating-point representation and the machine representation in IEEE double precision format for the number by hand. Show complete working of this problem.
(b) Use the Matlab command format hex and proceed as in example of (2.6)-(2.7) of the textbook to generate the binary double precision format for n. Please describe all the steps you performed to arrive at this answer especially the output Matlab prints to the screen.

