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This paper proposes a semiparametric methodology for modeling multivariate and conditional distributions. We first
build a multivariate distribution whose dependence structure is induced by a Gaussian copula and whose marginal dis-
tributions are estimated nonparametrically via mixtures of B-spline densities. The conditional distribution of a given
variable is obtained in closed form from this multivariate distribution. We take a Bayesian approach, using Markov chain
Monte Carlo methods for inference. We study the frequentist properties of the proposed methodology via simulation and
apply the method to estimation of conditional densities of summary statistics, used for computing conditional local false
discovery rates, from genetic association studies of schizophrenia and cardiovascular disease risk factors.
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1 Introduction

This paper proposes a semiparametric methodology for modeling multivariate and conditional densities. We first

build a multivariate distribution whose dependence structure is induced by a Gaussian copula and whose marginal

distributions are estimated nonparametrically via mixtures of B-spline densities. The conditional distribution of a

given variable as a function of the remaining variables is then obtained from this multivariate distribution. We take a

Bayesian approach, using Markov chain Monte Carlo (MCMC) methods for inference.

Our research is motivated by an application in psychiatric genetics. Individuals with schizophrenia have significantly

higher mortality rates compared with the general population, corresponding to a 10–20 year reduction in life ex-

pectancy (Colton and Manderscheid, 2006; Laursen et al., 2012; Saha et al., 2007). Although the mortality rate from

suicide is high, lifestyle and cardiovascular disease (CVD) risk factors contribute substantially to life expectancy re-

duction in schizophrenia (Marder et al., 2004; Mitchell et al., 2011). Epidemiological research has shown increased

rates of dyslipidemia, type 2 diabetes, obesity, and a high prevalence of metabolic syndrome among people with

schizophrenia (Mitchell et al., 2011; De Hert et al., 2006). This increase in CVD risk factors has been primarily
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attributed to lifestyle factors such as unhealthy diets, sedentary habits, excessive smoking, and to antipsychotic med-

ication side-effects (Laursen et al., 2012; De Hert et al., 2006; Kaddurah-Daouk et al., 2007). However, as suggested

by studies (i) predating introduction of antipsychotics (Raphael and Parsons, 1921), (ii) on untreated first episode in-

dividuals as well as their healthy relatives (Ryan et al., 2003) and (iii) on overlapping candidate genes (Hansen et al.,

2011), shared genetics between schizophrenia and CVD risk factors may also be of importance.

Both schizophrenia and CVD risk factors are heritable, and large genome-wide association studies (GWAS) have

reported single nucelotide polymorphisms (SNPs) associated with schizophrenia (Ripke et al., 2011) as well as CVD

risk factors, including systolic and diastolic blood pressure (Ehret et al., 2011), low- and high-density lipoprotein

cholesterol and triglycerides (Teslovich et al., 2010), body mass index (Speliotes et al., 2010), and waist to hip ratio

(Heid et al., 2010). Complex traits such as schizophrenia and CVD risk factors are also highly polygenic (Glazier

et al., 2002; Hirschhorn and Daly, 2005; Hindorff et al., 2009; Manolio et al., 2009; Yang et al., 2010), and there is

evidence that many of these genetic risk factors overlap across traits (Sivakumaran et al., 2011; Andreassen et al.,

2013), i.e., are pleiotropic.

We investigate the shared genetic mechanisms of schizophrenia and CVD risk factors by analyzing summary statistics

from large independent GWAS of schizophrenia (SCZ), triglycerides (TG), and systolic blood pressure (SBP). The

goal of these analyses is to estimate the conditional probability that a given SNP is non-null for schizophrenia given

its observed association with all three phenotypes simultaneously. This conditional version of the local false discovery

rate (local fdr; Efron, 2007) is biologically informative about the shared genetic architecture of schizophrenia and CVD

risk factors, as well as potentially increasing power to discover new genetic loci related to schizophrenia (Andreassen

et al., 2013). Estimation of the conditional local fdr requires estimation of the conditional density of the schizophrenia

summary statistics given values of the summary statistics of the pleiotropic phenotypes. As noted above, we accom-

plish this by modeling the marginal densities as a mixture of B-spline densities and linking the marginal densities via

a Gaussian copula.

Copulas are defined as follows. Let Y1, . . . , Yp be random variables with cumulative distribution functions (cdf)

F1(y1), . . ., Fp(yp), respectively. Sklar (1959) showed that there always exists a copula C, such that

F (y1, . . . , yp) = C(F1(y1), . . . , Fp(yp)). (1)

If F1, . . . , Fp are continuous, then C is unique. Note that C is a cdf for p uniform random variables, and as such is a

function from [0, 1]p onto [0,1]. A copula models the dependence structure among the Yj , j = 1, . . . , p, but does not

determine the marginal distributions. It can therefore be used as a tool for devising new multivariate distributions.

Genest and Favre (2007) discuss estimation methods for copula parameters, primarily in the bivariate case. Given

pairs (y11, y12), . . . , (yn1, yn2), they describe estimation of copula parameters using rank-based estimators. The jus-

tification for using rank-based methods is that the dependence structure captured by a copula is not related to the

marginal distributions and is invariant under strictly monotonic transformations of the variables . This is a two-step
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approach, where the marginal cdfs are first estimated by their empirical counterparts, and the copula parameters are

then estimated by maximizing the rank-based log likelihood. Unlike the method of moments, maximum pseudolike-

lihood extends naturally to the multivariate case. As Genest and Favre (2007) acknowledge, there is no consensus

in the literature on using only rank-based methods for estimating copula parameters. They also give references for

kernel-based nonparametric estimation of the copula density. Chen et al. (2006) consider simultaneous estimation of

both the marginal cdfs and the copula parameters. They argue that in general, empirical cdfs are inefficient estimators

of the marginal cdfs. Furthermore, except for a few special cases, the two-step approach mentioned above is in general

inefficient. Chen et al. (2006) propose a general sieve maximum likelihood estimation procedure for all the unknown

parameters, where the marginal densities are approximated by linear combinations of finite-dimensional known basis

functions with increasing complexity (sieves). Hoff (2007) proposes the extended-rank likelihood. For continuous

data, this likelihood is equivalent to the distribution of the multivariate ranks. As a function of the parameters, the

extended likelihood depends only on the copula parameters, not on the parameters of the marginal distributions. Pitt

et al. (2006) use a Gaussian copula to handle multivariate dependence, assuming that the marginal distributions are

specified. Their Bayesian formulation uses latent variables to transform each of the marginals to a standard normal

distribution, and a multivariate normal distribution is assumed for these latent variables. The response variables can be

either discrete or continuous or a combination of both. Pitt et al. (2006) also extend the idea of covariance selection to

Gaussian copula models. Song et al. (2009) utilize Gaussian copulas to combine separate univariate generalized linear

models into a joint regression model accommodating continuous, discrete or mixed outcomes. They specifically con-

sider multidimensional logistic regression and a joint model for mixed normal and binary outcomes. Inference is based

on maximum likelihood. Kolev and Paiva (2009) give a survey of copula-based regression models which includes the

Gaussian copula regression model of Pitt et al. (2006), transition regression models and longitudinal models. Smith

et al. (2010) model the dependence structure of continuous time series data using a sequence of bivariate copulas

termed pair-copulas and take a Bayesian approach to inference.

Our proposed method is closest in spirit to that of Chen et al. (2006), described above, in that both the copula pa-

rameters and the parameters of the marginal distributions are estimated simultaneously. While Chen et al. (2006)

use maximum likelihood estimation, our approach is Bayesian. Chen et al. (2006) first approximate the unknown

marginal density functions by appropriate sieves, and then the sieve MLEs are obtained by maximization over a

finite-dimensional parameter space. In their method, the smoothing parameters which control the smoothness of the

estimated densities are selected by cross validation. Our method allows for joint estimation of all the parameters,

including the smoothing parameters. Another emphasis of our proposed method is on conditional density estimation,

i.e., the estimation of f(Y1|Y2 = y2, . . . , Yp = yp). We derive an explicit formula for the conditional distribution

corresponding to the Gaussian copula and use it to obtain the conditional density in closed form.

The remainder of the paper is organized as follows. Section 2 provides a brief background on Gaussian copulas.

Section 3 presents our proposed model, the priors and an outline of the sampling scheme. Section 4 studies the

c© 0 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



4 Ori Rosen and Wesley K. Thompson: Bayesian semiparametric copula estimation

frequentist properties of the model via simulation, and Section 5 applies our model to data obtained from genome-

wide asscociation studies of schizophrenia and cardiovascular risk factors. We conclude with some remarks and future

directions in Section 6. Technical details are given in the appendices.

2 The Gaussian Copula

This paper focuses on the Gaussian copula (Song (2000)), which belongs to the family of elliptical copulas (Fang et al.

(2002)). Let u = (u1, . . . , up)
′ such that u ∈ [0, 1]p, then the cdf of the Gaussian copula is

C(u1, . . . , up) = Φp(Φ
−1(u1), . . . ,Φ−1(up); Ω), (2)

where Φp(·; Ω) is the cdf of a p-variate normal distribution with mean 0 and correlation matrix Ω, and Φ−1 is

the inverse cdf of the standard normal distribution. Taking the derivative ∂C(u)/∂u and evaluating it at u1 =

F1(y1), . . . , up = Fp(yp) results in the Gaussian copula pdf

c(u) = |Ω|−1/2 exp
{
−1

2
q′(Ω−1 − Ip)q

}
, (3)

where q = (q1, . . . , qp)
′, qj = Φ−1(Fj(yj)), j = 1, . . . , p, and Ip is the p× p identity matrix.

From Equation (1), it follows that the joint probability density function of Y1, . . . , Yp is

f(y1, . . . , yp) = c(F1(y1), . . . , Fp(yp))

p∏
i=1

fi(yi). (4)

Partitioning Ω as

Ω =

(
1 ω′

ω Ω11

)
,

where Ω11 is the correlation matrix of Y2, . . . , Yp and ω = (ω12, . . . , ω1p)
′, the conditional density of Y1 given

Y2, . . . , Yp is

f(y1|y2, . . . , yp) =
1

σ
f1(y1) exp

{
−1

2

[ (q1 − ω′Ω−111 q−1)2

σ2
− q21

]}
. (5)

In (5), f1(y1) is the marginal density of Y1, q−1 = (q2, . . . , qp)
′ and σ2 = 1 − ω′Ω−111 ω. Käärik and Käärik (2009)

give without proof a less explicit version of the conditional density (5), while Crane and Van Der Hoek (2008) provide

general conditional expectation formulas for continuous copulas. For a proof of (5), see Appendix A.

3 The model, priors and sampling scheme

3.1 The model

Similar to Chen et al. (2006), we propose simultaneous estimation of the marginal pdfs along with the copula parame-

ters. We take a Bayesian approach and focus on the Gaussian copula. Given n observations on p continuous margins,
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y = (y′1, . . . ,y
′
n)′, it follows from equations (3) and (4) that the likelihood is

L(Θ,Ω;y) = |Ω|−n/2 exp
{
−1

2

n∑
i=1

q′i(Ω
−1 − I)qi

} n∏
i=1

f1(yi1) . . . fp(yip), (6)

where qi denotes the vector q evaluated at the ith observation. The marginal densities are expressed nonparametrically

as mixtures of quadratic B-spline densities, which are regular B-splines that integrate to 1 over their support. This idea

was first proposed by Ghidey et al. (2004) for modeling the distribution of the random effects in linear mixed models.

In fact, Ghidey et al. (2004) used Gaussian densities as the basis functions, citing a result on the convergence of a

B-spline of degree q to a normal density, as q → ∞. Staudenmayer et al. (2008) used the same idea with B-spline

densities for density estimation in the presence of heteroscedastic measurement error. Pitt et al. (2006) use a Bayesian

approach to copula modeling but assume known parametric margins.

More specifically, to facilitate nonparametric estimation of the marginal pdfs, we express fj(yij), i = 1, . . . , n,

j = 1, . . . , p, as

fj(yij) =

Kj∑
k=1

cjkgk(yij), (7)

where cjk = exp(γjk)/
∑Kj

l=1 exp(γjl) and gk(·) are the B-spline densities. The number Kj of B-spline densities,

specific to fj , is fixed throughout the estimation process. In our experience, Kj of up to 30 is usually adequate for

estimating the marginal densities. Schellhase and Kauermann (2012) cite asymptotic results but recommend that Kj

be large enough but usually small compared to the sample size, which is the rule of thumb advocated by Ruppert

(2002). This is illustrated in Section 4 via simulation.

The corresponding knots are equally spaced along y1j , . . . ynj , j = 1, . . . , p. The γjk, j = 1, . . . , p, k = 1, . . . ,Kj ,

are unknown parameters, and for identifiability, γj1, j = 1, . . . , p, are set to zero. Although the γjks are unconstrained

parameters, the cjks satisfy cjk ∈ (0, 1) and
∑Kj

k=1 cjk = 1, j = 1, . . . , p. The marginal cdfs are

Fj(yij) =

Kj∑
k=1

cjkGk(yij), (8)

where Gk(·), k = 1, . . . ,Kj , are the B-spline cdfs corresponding to the gk(·)s.

3.2 Priors

Priors on the γjs

Let γj = (γj2, . . . , γjKj
)′. We assume a priori independent γj , j = 1, . . . , p. To obtain smooth fits for the marginal

pdfs, the cjks corresponding to neighboring B-splines must be close to one another (Eilers and Marx (1996)). This can

be achieved by constraining the corresponding γjks to be close to one another. By analogy to Eilers and Marx (1996)’s

idea, Lang and Brezger (2004) require the γjks to satisfy γj,ρ = 2γj,ρ−1 − γj,ρ−2 + uρ, where uρ ∼ N(0, τ2j ), and

p(γj2) ∝ 1, p(γj3) ∝ 1. However, this results in an improper prior distribution on γj similar to the intrinsic Gaussian
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Markov random field prior used in spatial statistics. Chib and Jeliazkov (2006) place a joint normal prior on γj2 and

γj3 which fixes the impropriety of the prior on γj . For example, if (γj2, γj3)′ ∼ N2(0, c τ2j I2), where c is a fixed

constant, the prior on γj becomes

p(γj |τ2j ) ∝ (τ2j )−
1
2 (Kj−1) exp

{
− 1

2τ2j

[Kj∑
ρ=4

(γj,ρ − 2γj,ρ−1 + γj,ρ−2)2 + c−1γ′j,2:3γj,2:3

]}
, (9)

where γj,2:3 is a vector consisting of the first two entries of γj . The summation in the exponent on the right-hand side

of (9) can be expressed as γ′jPjγj , where Pj = D′jDj and Dj is the (Kj − 3)× (Kj − 1) matrix
1 −2 1 0 0 . . . 0
0 1 −2 1 0 . . . 0
... . . .

...
0 0 . . . 1 −2 1

 .

Equation (9) can now be re-expressed as

p(γj |τ2j ) ∝ (τ2j )−
1
2 (Kj−1) exp

{
− 1

2τ2j
γ′jP

∗
j γj

}
,

where P ∗j,ll = Pj,ll + c−1, for l = 1, 2.

Priors on the τjs

The τjs are assumed independent Half-t(νj , Aj) (Gelman, 2006) with pdf p(x) ∝ [1+(x/Aj)
2/νj)]

−(νj+1)/2, x > 0,

where the hyperparameters νj and Aj are assumed known. The larger the value of Aj , the less informative the prior is.

In our computations,Aj = 10 andAj = 105 gave indistinguishable results. Computationally, it is convenient to utilize

the following scale mixture representation (Wand et al., 2012): (τ2j | aj) ∼ IG(νj/2, νj/aj), aj ∼ IG(1/2, 1/A2
j ),

where IG(a, b), is the inverse Gamma distribution with pdf p(x) ∝ x−(a+1) exp(−b/x), x > 0.

Prior on Ω

Following Danaher and Smith (2011), we express Ω as

Ω = diag(Σ)−1/2 Σ diag(Σ)−1/2, (10)

where Σ is a non-unique positive definite matrix, and diag(Σ) is a diagonal matrix consisting of the leading diagonal

of Σ. The matrix Σ−1 is decomposed as Σ−1 = LL′, where L is a lower triangular Cholesky factor with ones on

its diagonal. The priors on the elements of L are independent N(0, σ2
L), where σ2

L is a fixed large number, reflecting

vague knowledge on the elements of L. Alternative approaches include Chan and Jeliazkov (2009) who use the

modified Cholesky decomposition and impose constraints on elements of the matrices making up this decomposition.

Daniels and Pourahmadi (2009) parametrize correlation matrices in terms of partial autocorrelations as proposed by Joe

(2006). These partial autocorrelations take values in the interval [−1, 1] which makes them easy to work with. When

the number of variables is large, it may be more appropriate to parameterize the correlation matrix parsimoniously via

variable selection methods as in Pitt et al. (2006), for example.
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3.3 The Sampling Scheme

This section gives an outline of the MCMC sampling scheme. More details are given in Appendix B. To simplify the

sampling scheme, we introduce unobservable mixture indicators, zijk, such that zijk = 1 if yij came from the kth

spline density. The sampling scheme consists of the following steps

1. Sample γj from p(γj | zj), j = 1, . . . , p, where zj = {zijk, i = 1, . . . , n, k = 1, . . . ,Kj}, using a Metropolis-

Hastings step.

2. Sample τ2j from p(τ2j | γj , aj), j = 1, . . . , p.

3. Sample aj from p(aj | τ2j ), j = 1, . . . , p.

4. Sample Ω from p(Ω | {γj}pj=1, data).

5. Sample the indicators, zijk, from p(zijk | {γj}pj=1, data), i = 1, . . . , n, j = 1, . . . , p, j = 1, . . . ,Kj .

4 Simulation Study

In this section we study the frequentist properties of our model by Monte Carlo simulation studies. Two simulation

settings are considered: (i) samples are generated from a trivariate normal distribution with mean vector (3, 1, 2)′ and

correlation matrix

Ω =

 1 0 .5774
0 1 −.5774

.5774 −.5774 1

 , (11)

and (ii) samples are generated from a trivariate Gaussian copula with marginal distributions

F1(y1) = 0.3 Φ(y1) + 0.7 Φ(y1 − 5), −∞ < y1 <∞,
F2(y2) = 1− exp(−y2/3), y2 > 0,
F3(y3) = Φ(y3), −∞ < y3 <∞

(12)

and the correlation matrix (11). From each setting, 50 samples of size 103 and 50 samples of size 104 are generated.

For each sample, a total of 10,000 MCMC iterations are run with a burn-in period of 2,000. To evaluate the results,

we utilize the Kullback-Leibler (KL) divergence

KL = −
∫
h(t) log

ĥ(t)

h(x)
dt,

where h(·) is a probability density function and ĥ(·) is its estimate. In our case, h(·) is either a marginal density, f(yj),

j = 1, 2, 3 or a conditional density, f(y1|y2, y3). In addition, the distance between the true correlation matrix Ω and

its estimate is assessed using Stein’s loss

trace(Ω̂Ω−1)− log(det(Ω̂Ω−1))− p,
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Figure 1 Boxplots of the Kullback-Leibler divergence between the true and the estimated marginal densities.
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Figure 2 Boxplots of the Kullback-Leibler divergence between the true and the estimated marginal densities of
setting (ii) with n = 103 as a function of the number, Kj , of B-spline densities.

see, for example, Daniels and Kass (2001). Each column in Figure 1 presents, for each of the three marginal

distributions, boxplots of the KL divergence between the true and the estimated marginal densities. The first two

columns of boxplots from the left correspond, respectively, to samples of size n = 103 and n = 104 from setting (i),

while the last two columns correspond to setting (ii). The KL values reflect good estimation of the marginal densities

in both settings. For n = 104, these values are less variable.

Figure 2 demonstrates that the fitted marginal densities of setting (ii) are not sensitive to the number of B-spline

densities used, provided this number, Kj , is large enough, as discussed in Section 3.1. This figure consists of boxplots
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Figure 3 Boxplots of the Kullback-Leibler divergence between the true and the estimated conditional densities.
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Figure 4 Boxplots of Stein’s loss based on the true and estimated correlation matrices.

of the KL divergence between the true and estimated marginal densities for Kj = 5, 10, 20, 30, 60, j = 1, 2, 3, based

on 50 samples of size n = 103. As can be seen in these boxplots, Kj = 5 is somewhat too small, especially for

estimating the mixture in (12), but Kj = 20 already seems sufficient. Moreover, adding more basis functions does not

result in overfitting.

Figure 3 displays boxplots of the KL divergence between the true and estimated conditional densities, organized as in

Figure 1. Each column includes nine boxplots corresponding to conditioning on quantiles of Y2 and Y3 according to
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1 2 3 4 5 6 7 8 9
Quantile of Y2 25 50 75 25 50 75 25 50 75
Quantile of Y3 25 25 25 50 50 50 75 75 75

For example, the fourth boxplot in each panel corresponds to conditioning on the 25th quantile of Y2 and the 50th

quantile of Y3. It is seen in Figure 3 that the KL divergences corresponding to n = 104 are less variable than the ones

corresponding to n = 103. Also, the KL divergences are less variable for setting (i) compared to setting (ii).

Figure 4 displays boxplots of the Stein loss values for setting (i) (first two boxplots from the left) and for setting (ii).

From these plots, it is evident that the methodology provides good estimates of the underlying correlation matrix. The

Stein loss values are less variable for n = 104.

Source code to reproduce the results of this section and of Section 5 is available as Supporting Information on the

journal’s web page (http://onlinelibrary.wiley.com/doi/xxx/suppinfo).

5 Application

We investigate whether there are shared genetic mechanisms between schizophrenia (SCZ) and CVD risk factors by

analyzing summary statistics from independent studies. We obtained two-tailed p-values from a schizophrenia GWAS

(n=21,856 subjects; Ripke et al. 2011) and from independent GWAS on TG (n=96,568 subjects; Teslovich et al. 2010)

and SBP (n= 203,056 subjects; Ehret et al. 2011). We selected all assayed SNPs in linkage disequilibrium with one or

more 5′ untranslated region loci, a category shown to be highly enriched for non-null effects across many phenotypes

(Schork et al., 2013), resulting in 132,765 SNPs assessed in all three phenotypes simultaneously.

Since two-tailed p-values were made publicly available, we were able to recover the absolute z-scores of the test

statistics but not their sign. For ease of notation, we denote absolute z-scores by zzz = (z1, z2, z3)′, where zj =

Φ−1(1 − .5pj), j = 1, 2, 3 and 1=SCZ, 2=SBP and 3=TG. Here, pj is the two-tailed p-value for the jth phenotype

and Φ is the standard normal cdf. Pairwise scatterplots of the data are shown in Figure 5. Histograms of absolute
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Figure 5 Pairwise scatteplots of the data.
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z-scores for each phenotype are displayed in the top panel of Figure 6, along with the fitted marginal densities from

the proposed model estimated using 20 equally spaced knots for each phenotype.

The estimates (posterior means) of the correlations making up the matrix Ω are ω̂12 = .0463, ω̂13 = .0659 and

ω̂23 = .0499. The 95% credible intervals for ω12, ω13 and ω23 are [.0455,.0463], [.0654,.0659] and [.0389,.0499],

respectively. The lower and upper limits for these credible intervals are obtained as the 0.025 and 0.975 percentiles of

the MCMC iterates of the correlations. Thus, quantiles of TG and SBP z-scores are positively correlated with quantiles

of SCZ z-scores, demonstrating that SCZ has a partially overlapping genetic architecture with these two phenotypes.

Of primary interest is whether the probability that a SNP has a non-null association with SCZ depends on the strength

of its relationship with TG and/or SBP. To investigate this question further, we utlize the local false discovery frame-

work of Efron (2007). The local false discovery rate (local fdr) is defined as the posterior probability that a SNP is

null for SCZ given its observed absolute z-score. By Bayes’ rule this is given by

fdr(z1) =
π0φ(z1)

f1(z1)
(13)

where φ is the folded standard normal density (i.e., the distribution of the absolute value of a standard normal random

variable), π0 is the proportion of SNPs that are null for SCZ, and f1 is the density of z1. Use of the folded standard

normal density is equivalent to the theoretical null of Efron (2007). This is justified in the current example since

the summary statistics were made publicly available after performing usual genomic control procedures (Devlin and

Roeder, 1999). A conservative estimate of the fdr is produced by assuming π0 = 1 and utilizing the nonparametric

estimate f̂1 of f1 produced from our proposed model. The assumption that π0 = 1 in Equation (13) is reasonable, since

even for highly polygenic traits such as SCZ, the proportion of null SNPs is considerably greater than 0.9 (Andreassen

et al., 2013). Larger z-scores will have a higher probability of association with the phenotypes of interest. Here, a

z-score cut-off of z1 ≥ 3.3 produces estimated f̂dr(z1) ≤ .2. The bottom panel of Figure 6 shows similar histograms

to those in the top panel but for absolute z-scores ≥ 3.3.
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0 5
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1
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4 6 8
0
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4 6 8
0

0.01

0.02
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4 6 8
0

0.01
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Figure 6 Top panel from left to right: marginal density histograms and density estimates of SCZ, SBP and TG. The
solid lines are density estimates based on the method of Section 3. Bottom panel: similar plots for absolute z-scores
≥ 3.3.
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Figure 7 Conditional density estimates showing the tails only (Z1 ≥ 3.3).

Z-Score
3.5 4 4.5 5 5.5 6 6.5 7

fd
r

0

0.05

0.1

0.15

0.2

0.25

fdr

q2 = .99, q3 = 0.5

q2 = .5, q3 = .99

q2 = .99, q3 = .99

Figure 8 Conditional local fdr estimates f̂1(z1|z2, z3) for different quantiles of z2 and z3.

The conditional local fdr is given by

fdr(z1|z2, z3) =
π0(z2, z3)φ(z1)

f(z1|z2, z3)
, (14)

where π0(z2, z3) is the conditional probability that z1 is null given (z2, z3) and f(z1|z2, z3) is the conditional density of

z1 given (z2, z3). By setting π0(z2, z3) = 1 in Equation (14) and using an estimate f̂(z1|z2, z3) based on Equation (5),

we obtain a conservative estimate f̂dr(z1|z2, z3) = φ(z1)/f̂(z1|z2, z3). Conditional density estimates for z1 ≥ 3.3

given quantiles of z2 and z3 are displayed in Figure 7, and conditional local fdr estimates are given in Figure 8. For a

given z-score, the local fdr is lower when conditioning on larger quantiles of z2 and z3. For example, for z1 = 3.5, the

unconditional fdr estimate is f̂dr(3.5) = .1364, whereas f̂dr(3.5|z2 = 3.03, z3 = 3.63) = .08, where z2 = 3.03 and

z3 = 3.63 are the 99th quantiles of SBP and TG absolute z-scores, respectively. Using the commonly-used threshold

of .2, there were 1,594 significant SNPs using local fdr, whereas there were 1,715 SNPs using conditional local fdr,

for an increase of 7.6%.

To evaluate the goodness of fit of the Gaussian copula, we use the S(B)
n statistic given in Genest et al. (2009). This is a

Cramér-von Mises-type statistic which measures the distance between the multivariate empirical distribution function

and the independence copula, obtained by using Rosenblatt’s probability integral transform (Rosenblatt, 1952). For

more details, see Genest et al. (2009). The calculation of S(B)
n is computer intensive, and so to facilitate its computation
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we analyze a subset of the data obtained by sampling randomly 1000 observations from the full data set. At each

MCMC iteration S(B)
n is computed, thus yielding an approximation to the posterior distribution of S(B)

n . Figure 9

S
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n
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10
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Figure 9 Density histogram of S(B)
n .

displays a density histogram of the S(B)
n iterates. The 99%th empirical quantile of these values is equal to 0.36 which

indicates good fit of the Gaussian copula to the data.

6 Discussion

In this paper we propose a Bayesian methodology for estimating multivariate distributions wherein the marginal den-

sities are estimated nonparametrically and linked via a Gaussian copula.

Various extensions and applications of our model are possible. For example, the use of Gaussian copulas assumes no

tail dependence between pairs of variables (Embrechts et al. (2003)). Upper tail dependence between random variables

Y1 and Y2, is defined as

lim
u↑1

Pr
(
Y2 > F−12 (u)|Y1 > F−11 (u)

)
. (15)

Upper tail dependence is a measure of association in the upper-right quadrant, whereas lower tail dependence is defined

analogously for the lower-left quadrant. Both upper and lower tail dependence assess the strength of relationships

between extreme events of Y1 and Y2. While Gaussian copulas are upper- and lower-tail independent, other families

of elliptical copulas (Fang et al. (2002)) are not. For example, t-copulas are a family of elliptical copulas allowing for

tail dependence. Implementing our model using other families of elliptical copulas may provide better fits for random

variables exhibiting dependence in extreme events.

Other extensions are possible. For example, the proposed model currently handles only continuous margins. Recent

work has proposed Bayesian estimation of copula models with discrete margins by augmentation with uniform latent

variables (Smith and Khaled (2012)). Additionally, Pitt et al. (2006) developed a graphical model selection prior on

the Gaussian copula correlation matrix.
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Finally, it is possible to adapt the copula model to estimate the multivariate local false discovery rate (Andreassen et al.,

2013). This involves an extension of Efron’s (2007) two-group mixture model to a 2P -group mixture model, where P

is the number of phenotypes of interest. Andreassen et al. (2013) have shown that bivariate local false discovery rate

is potentially much more powerful than univariate local false discovery rate, and highly informative biologically.
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Appendix A

Conditional Density Formula for Gaussian Copula

Using Equation (4), it follows that

f(y1|y2, . . . , yp) = f1(y1)
c(F1(y1), . . . , Fp(yp))

c−1(F2(y2), . . . , Fp(yp))
, (16)

where c is the pdf (3), and c−1 is the copula density with correlation matrix Ω11, defined in Section 2. Differentiating

(2), substituting qj = Φ−1(Fj(yj)) and plugging into (16) results in

f(y1|y2, . . . , yp) = f1(y1)
φp(q1, . . . , qp)

φ(q1)φp−1(q2, . . . , qp)
, (17)

where φp and φp−1 are the densities corresponding to N(0p,Ω) and N(0p−1,Ω11), respectively, and φ is the density

of the univariate standard normal. The notation 0p means a vector of p zeros. Plugging the normal densities into (17)

leads to

f(y1|y2, . . . , yp) = f1(y1)
|Ω|−1/2

|Ω11|−1/2
exp
{
−1

2
q′Ω−1q +

q21
2

+
1

2
q′−1Ω−111 q−1

}
. (18)

Applying Schur decomposition to Ω−1 gives

Ω−1 =

(
1 0′p−1

−Ω−111 ω Ip−1

)(
(1− ω′Ω−111 ω)−1 0′p−1

0p−1 Ω−111

)(
1 −ω′Ω−111

0p−1 Ip−1

)
, (19)

where Ip−1 is the (p− 1)× (p− 1) identity matrix. Using (19) implies

q′Ω−1q = (q1 − ω′Ω−111 q−1)2(1− ω′Ω−111 ω)−1 + q′−1Ω−111 q−1 (20)
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and

|Ω|−1 = (1− ω′Ω−111 ω)−1|Ω11|−1. (21)

Plugging expressions (20) and (21) into (18) gives the conditional density (5).

Appendix B

Details of the Sampling Scheme

Section 3.3 describes the outline of the sampling scheme. This appendix provides some more details.

1. Sampling the γj

The augmented conditional posterior of γj is

p(γj |{γl}l 6=j ,Ω, data, zj) ∝ exp
{
− 1

2

∑n
i=1 q

′
i(Ω
−1 − I)qi

}∏n
i=1

∏Kj

k c
zijk
jk

× exp
{
− 1

2τ2
j
γ′jP

∗
j γj

}
,

where zj = {zijk, i = 1, . . . , n, k = 1, . . . ,Kj}. The marginal pdfs and cdfs fj(yij) and Fj(yij) are modeled

as in (7) and (8), respectively. With the latent indicators, zj , qij = Φ−1(
∏Kj

k=1(Gk(yij))
zijk). Since this is not a

function of γj , the log conditional posterior of γj reduces to

log p(γj |zj)
c
=

Kj∑
k

njk log cjk −
1

2τ2j
γ′jP

∗
j γj , (22)

where c
= denotes equality up to a constant, and njk =

∑n
i=1 zijk. To sample γj , (22) is maximized at each

iteration with respect to γj . The maximizer and the negative inverse Hessian of (22), evaluated at the maximizer,

are used in a Metropolis-Hastings step with a multivariate t distribution with small degrees of freedom (e.g., 4)

as the proposal distribution.

2. Sampling the τ2j
The τ2j , j = 1, . . . , p, are sampled from IG((Kj + νj − 1)/2, νj/aj + 1

2γ
′
jP
∗
j γj).

3. Sampling the aj

The aj , j = 1, . . . , p, are sampled from IG((νj + 1)/2, νj/τ
2
j + 1/A2

j ).

4. Sampling Ω

p(Ω|{γj}pj=1, data) ∝ |Ω|−n/2 exp
{
− 1

2

∑n
i=1 q

′
i(Ω
−1 − I)qi

}
p(Ω)

∝ |Ω|−n/2 exp
{
− 1

2 tr(SΩ−1)
}
p(Ω),

where p(Ω) is the prior on Ω, S =
∑n
i=1 qiq

′
i and qij = Φ−1(

∑K
k=1 cjkGk(yij)). The matrix Ω is sampled in

a random-walk Metropolis step via the decomposition described in Section 3.2. The elements of L are sampled

individually using a normal proposal centered at the current value.
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5. Sampling the indicators

The indicators are sampled as Bernoulli random variables with probability

p(zijk = 1|data, {γj}pj=1) ∝ exp
{
−1

2
q′i(Ω

−1 − I)qi

}
cjkgk(yij),

where qij = Φ−1(
∏K
k=1(Gk(yij))

zijk).
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