Name _____

- 1. If $f(x, y, z) = ln(x^2y^3z^4)$,
 - a. Find the gradient of f at (2, 3, 4). answer: (1, 1, 1)
 - b. Find the derivative of f at (2, 3, 4) in the direction of the vector < 0, 1, 1 >. answer: $\frac{2}{\sqrt{2}}$
 - c. In what direction is the directional derivative smallest (most negative), at the point (2, 3, 4)? answer: (-1, -1, -1)
 - d. Find the equation of the tangent plane to the surface f(x, y, z) = ln(27648) at (2, 3, 4). answer: x + y + z = 9
- 2. If $w(x, y) = x^4 + x^2y^2 + e^{xy}$, find:
 - a. $\frac{\partial w}{\partial y} =$ answer: $2x^2y + xe^{xy}$
 - b. $w_{xx} + w_{yy} =$ answer: $14x^2 + 2y^2 + (x^2 + y^2)e^{xy}$

3. If the temperature is $T(x,y) = x^2y^3 + \ln(xy)$, what is the rate of change of temperature in a car at (1,1), if the velocity of the car is $(\frac{dx}{dt}, \frac{dy}{dt}) = (-2,3)$? answer: 6

4. Find the point on the surface $z = \sqrt{1 - 2x - 4y}$ which is closest to the point (-3, -5, 0).

answer: $(-2, -3, \sqrt{17})$

5. If $(U_x, U_y, U_z) = (3, 5, -1)$ at the point (-1, 0, 0), which has spherical coordinates $\rho = 1, \phi = \frac{\pi}{2}, \theta = \pi$, find U_{θ} at this point. For spherical coordinates,

$$\begin{aligned} x &= \rho \sin(\phi) \cos(\theta) \\ y &= \rho \sin(\phi) \sin(\theta) \\ z &= \rho \cos(\phi) \end{aligned}$$

answer: -5