Math 3323, Final

Name _____

1. If A =

2	1	2]	
0	3	2	
	0	$2 \rfloor$	

a. Find all eigenvalues of A.

answer: $\lambda=2,3$

b. For each eigenvalue, find a basis for the subspace of eigenvectors (the eigenspace).

answer: for $\lambda = 2$, basis is [(1, 0, 0), (0, -2, 1)], for $\lambda = 3$, basis is [(1, 1, 0)].

2. Find the eigenvalues and corresponding eigenvectors for A =

$$\left[\begin{array}{rrr}1 & -2\\2 & 1\end{array}\right]$$

answer: $\lambda_1 = 1 + 2i$, $x_1 = (i, 1)$ or (1, -i); $\lambda_2 = 1 - 2i$, $x_2 = (-i, 1)$ or (1, i).

3. Find the determinant of A =

[1]	2	1	5
0	3	0	
4	4	1	
0		1	4

answer: 18

4. Find the general solution of:

$$\frac{dx}{dt} = y$$
$$\frac{dy}{dt} = 6x - y$$

answer:
$$\begin{bmatrix} x \\ y \end{bmatrix} = C_1 e^{-3t} \begin{bmatrix} 1 \\ -3 \end{bmatrix} + C_2 e^{2t} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

5. Find a basis for the subspace spanned by the four vectors:

1		$\begin{bmatrix} 2 \end{bmatrix}$		3		[1]
2	Ι,	5	,	7	,	1
1		0		1	,	$\begin{bmatrix} 1\\1\\3 \end{bmatrix}$
				L _		

answer: $\left[(1,2,1),(0,1,-2)\right]$ (other answers possible)

6. Find the inverse of

$$A = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 2 & 4 \\ 0 & 0 & 1 & 3 \end{bmatrix},$$

answer:

$$A^{-1} = \begin{bmatrix} 1 & -1 & 0 & 0 \\ -1 & 2 & 0 & 0 \\ 0 & 0 & 1.5 & -2 \\ 0 & 0 & -0.5 & 1 \end{bmatrix},$$

7. Define:

- a. An orthogonal matrix answer: $A^T A = I$
- b. A symmetric matrix answer: $A^T = A$
- c. A positive definite matrix answer: symmetric, with all eigenvalues positive
- d. A singular matrix answer: det(A) = 0

8. Calculate A^{10} , if A =

•

$$\left[\begin{array}{rrr} 2 & -1 \\ -1 & 2 \end{array}\right]$$

Hint: $S^{-1}AS = D$, where

$$D = \left[\begin{array}{cc} 1 & 0 \\ 0 & 3 \end{array} \right], S = \left[\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array} \right]$$

answer: $A^{10} = SD^{10}S^{-1} =$ $\begin{bmatrix} 29525 & -29524 \\ -29524 & 29525 \end{bmatrix}$

- 9. Write the equations for:
 - a. The line through the points (1,-1,2) and (3,3,3).

answer: x = 1 + 2t, y = -1 + 4t, z = 2 + t

b. The plane through (1,-1,2), perpendicular to this line.

answer: 2(x-1) + 4(y+1) + (z-2) = 0