1. If the second order Taylor series method (one more term than Euler's method) is used to solve $u' = t^2 + u^2$, write u_{n+1} in terms of h, t_n and u_n only. $(t_n = nh, u_n \approx u(t_n))$

 $U' = t^2 + u^2$ $u'' = 2t + 2u(u^2 + t^2)$

Unt = un + h (t2 + y2) + 12 (2tn + 2un (t2+42))

F= (1+2x) f" = 8 (1+2x)-3 f" = -48(H2x) 4

a. Let $T_2(x)$ be the Taylor polynomial of degree 2 which matches f(x), f'(x) and f''(x) at x=0, where $f(x)=\frac{1}{1+2x}$. Find a reasonable bound on

$$f' = -2[1+2x]^{2} \max_{0.1 \le x \le 0.1} |T_{2}(x) - f(x)| \le \left| \frac{f'''(5)}{6} \times 3 \right|$$

$$f'' = 8(1+2x)^{-3} + \left| \frac{48}{(1+25)^{4}} \right| \le \left| \frac{48}{(1+25)^{4}} \right| \le \left| \frac{48}{(0.8)^{4}} \right| \le \left| \frac{48}{(0.8)$$

b. Let $L_2(x)$ be the Lagrange polynomial of degree 2 which matches f(x) at x = -0.1, 0.0 and 0.1, where $f(x) = \frac{1}{1+2x}$. Find a reasonable bound on

$$\max_{-0.1 \le x \le 0.1} |L_2(x) - f(x)| \le \left(\frac{f''(\xi)}{6} (x + 0.1) \times (x - 0.1) \right)$$

$$\le \left(\frac{48}{(1 + 28)^4} + \frac{1}{6} (x + 0.1) \times (x - 0.1) \right) \le \frac{48}{(0.8)^4} + \frac{1}{6} (0.2)^3$$
1

3. a. A root finder gives consecutive errors of $e_5 = 10^{-2}$, $e_6 = 10^{-4}$, $e_7 = 10^{-11}$. Estimate the order of the method.

b. A quadrature method gives an error of 10^{-7} when h = 0.001 and 10^{-11} when h = 0.0001. Estimate the order of the method.

$$\frac{10^{-7} = M(.001)^{4}}{10^{-11} = M(.001)^{4}}$$

$$\frac{10^{6} = 10^{4}}{10^{-11}} = \frac{10^{4}}{10^{4}} = \frac{$$

c. A differential equation solver gives an answer u(1) = 0.98888 when h = 0.1, and u(1) = 0.90666 when h = 0.01, and u(1) = 0.90600 when h = 0.001. Estimate the order of the method.

$$0.98888 - T = M (.1)^{\alpha} > .08222 = M[(.1)^{\alpha} - (01)^{\alpha}]$$

$$0.90666 - T = M (.01)^{\alpha} > .00066 = M[(01)^{\alpha} - (001)^{\alpha}]$$

$$0.90600 - T = M (.001)^{\alpha} > .00066 = M[(01)^{\alpha} - (001)^{\alpha}]$$

$$12S = 10^{\alpha} (\alpha = 2.1)$$

4. Use the inverse power method to find the smallest (in absolute value) eigenvalue of A, if

$$A^{-1} = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 20 & 1 \\ 0 & 1 & 2 \end{bmatrix} \qquad \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} = \begin{bmatrix} 1 & 89 \\ 2 & 00 \\ 20 & 1 \end{bmatrix}$$

Start with (1, 10, 1) and do 3 iterations.

6

4
$$\binom{10}{10} \rightarrow \binom{12}{202} \rightarrow \binom{226}{4064} \rightarrow \binom{4516}{81732}$$
 refur $20,11$
 19.88

$$\lambda_{max}(A^{+}) = 20 \qquad \lambda_{min}(A) = 0.05$$

Reduce
$$U_1 = y$$

$$y'' = y'y - tz$$

$$z''' = z''z - y$$

$$U_2 = z''$$

$$U_3 = z''$$

to a system of 5 first order equations. The right hand sides must involve only $t, u_1, u_2, u_3, u_4, u_5$. The left hand sides must be $u'_1, u'_2, u'_3, u'_4, u'_5$ respectively.

6. Do one iteration of Newton's method, starting from (0,0), to solve:

$$f(x,y) = 2x^2 + y - 1 = 0$$

$$g(x,y) = -2x + y^2 + 1 = 0$$

7. Write $(1+x)^{1/3}-1$ in a form where there is no serious problem with roundoff, when $x \approx 0$. (Hint: $a^3 - b^3 = (a^2 + ab + b^2)(a - b)$)

$$(1+x)^{\frac{1}{3}}-1=\frac{(1+x)^{-1}}{(1+x)^{\frac{2}{3}}+(1+x)^{\frac{1}{3}}+1}=\frac{x}{(1+x)^{\frac{2}{3}}+(1+x)^{\frac{1}{3}}+1}$$

8. How should A, B, r be chosen to make the approximation:

$$\int_{-1}^{1} f(x)dx \approx Af(-r) + Bf(0) + Af(r)$$

as high degree of precision as possible?

$$f = 1 \quad 2 = S_{1} \mid J_{x} = A + B + A \quad 2A + B = 2$$

$$f = x^{2} = S_{1} \times 2J_{x} = Ar^{2} + Ar^{2} \quad 2Ar^{2} = \frac{2}{3}$$

$$f = x^{4} \quad \frac{2}{3} = S_{1} \times 7J_{x} = Ar^{4} + Ar^{4} \quad 2Ar^{4} = \frac{2}{3}$$

$$r^{2} = \frac{2}{3} = \frac{2}{3} \quad B = \frac{4}{3}$$

$$A = \frac{1}{3}r^{2} = \frac{5}{3} = A$$

9. Will the iteration $x_{n+1} = \frac{1}{2}(x_n + \frac{5}{x_n})$ converge to the root $\sqrt{5}$, if the starting guess is sufficiently good? Justify your answer theoretically.

$$g(x) = \frac{1}{2}(x + 5x^{-1})$$

 $g'(x) = \frac{1}{2} - \frac{5}{2}x^{-2}$
 $g'(x) = \frac{1}{2} - \frac{5}{2}x^{-2} = 0$ (yer cornegar)

Math 4329, Final (F)

Name Key

a. Let $T_4(x)$ be the Taylor polynomial of degree 4 which matches f(x), f'(x), f''(x), f'''(x) and $f^{iv}(x)$ at x = 0, where $f(x) = \cos(x/6)$. Find the best possible bound on

The the best possible bound on $T \le \xi \le T$ $\max_{-\pi \le x \le \pi} |T_4(x) - f(x)| \le \int_{S_1}^{S_1} |T_4(x)| \le \int_{S_1}^{S_2} |T_4$

b. Let $L_4(x)$ be the Lagrange polynomial of degree 4 which matches f(x) at $x = -\pi, -0.5, 0, 0.5$ and π , where $f(x) = \cos(x/6)$. Find the best possible bound on

 $|L_4(1) - f(1)| \le \left(\frac{f'(c)}{S!}\right) (1+0.5) | (1-0.5) (1-77)|$ $\le \left(\frac{f}{5}\right)^5 \sin \frac{\epsilon}{6} | (6.65) \le \left(\frac{f}{5}\right)^5 \frac{1}{20} | (6.65) \le \frac{3.56.06}{120}$

- 2. a. A root finder gives consecutive errors of $e_5 = 10^{-3}$, $e_6 = 10^{-5}$, $e_7 = 10^{-10}$. Estimate the order of the method. $O = M (O^{-5})^4$
 - b. A quadrature method gives an error of 10^{-5} when $h = 10^{-2}$ and 10^{-9} when $h = 10^{-3}$. Estimate the order of the method.

 $10^{-5} = 10^{-2}$ 10^{-2} $10^{-4} = 10^{-4}$ $10^{-9} = 10^{-4}$ $10^{-9} = 10^{-4}$

- c. A differential equation solver gives an answer u(1) = 2.18888 when h = 0.1, and u(1) = 2.10666 when h = 0.01, and u(1) = 2.10000 when h = 0.001. Estimate the order of the method.
- $\frac{2.18888 T = M(.1)^{4}}{2.10666 T = M(.01)^{4}} = 0.08222 = M(.1)^{4} (01)^{4}}$ $\frac{2.10666 T = M(.01)^{4}}{2.10600 T = M(.001)^{4}} = 0.00066 = M(.01)^{4} (001)^{4}$ $\frac{1}{25} = 10^{4} (25)^{4}$

3. Use the power method to find the largest (in absolute value) eigenvalue of

$$\left[\begin{array}{ccc} 2 & 1 & 0 \\ 1 & 3 & 1 \\ 0 & 1 & 2 \end{array}\right]$$

What is the corresponding eigenvector?

$$X_0 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad X_1 = \begin{pmatrix} 3 \\ 5 \\ 3 \end{pmatrix} \qquad X_2 = \begin{pmatrix} 43 \\ 85 \\ 43 \end{pmatrix}$$

$$X_3 = \begin{pmatrix} 43 \\ 85 \\ 43 \end{pmatrix}$$

$$X_4 = \begin{pmatrix} 21 \\ 11 \end{pmatrix} \qquad X_3 = \begin{pmatrix} 43 \\ 85 \\ 43 \end{pmatrix}$$

$$X_5 = \begin{pmatrix} 21 \\ 43 \end{pmatrix} \qquad Y_6 = \begin{pmatrix} 21 \\ 21 \end{pmatrix} \qquad Y_7 = \begin{pmatrix} 21 \\ 21 \end{pmatrix} \qquad Y_8 = \begin{pmatrix} 43 \\ 85 \\ 43 \end{pmatrix}$$

4.
$$x^2 + xy^3 = 9 - 3y$$

 $3x^2y - y^3 = 4 + 2x$

Do one iteration of Newton's method, to find a root of this system, starting from $(x_0, y_0) = (0, 0)$.

$$\begin{cases} \begin{pmatrix} x_{1} \\ y_{1} \end{pmatrix} = \begin{pmatrix} x_{0} \\ y_{0} \end{pmatrix} - \begin{pmatrix} 2x + y^{3} & 3xy^{2} + 3 \\ 6xy - 2 & 3x^{2} - 3y^{2} \\ -2 & 0 \end{pmatrix} + \begin{pmatrix} -9 \\ -4 \end{pmatrix} + \begin{pmatrix} -9 \\ -2 \\ 3 \end{pmatrix} \end{cases}$$

$$g(x) = x + sn \times \qquad g(t) = |-| = 0$$

$$g'(x) = f + cos \times \qquad g''(t) = 0 \qquad \text{Converger, order } = 3$$

$$g''(x) = -sin \times \qquad g'''(t) = 1$$

a. Write the third order differential equation $u''' - 5u' - u = t^4$ as a system of three first order equations, that is, in the form:

5. Will the iteration $x_{n+1} = x_n + \sin(x_n)$ converge when x_0 is sufficiently

$$u' = f(t, u, v, w) = V$$

$$v' = g(t, u, v, w) = W$$

$$w' = h(t, u, v, w) = 5V + U + 4$$

b. Now write out the formulas for $u_{n+1}, v_{n+1}, w_{n+1}$ for Euler's method applied to this system of first order equations:

$$u_{n+1} = U_n + h V_n$$

$$v_{n+1} = V_n + h W_n$$

$$w_{n+1} = W_n + h \left(S V_n + U_n + f_n^{+} \right)$$

7. If the third order Taylor series method (two more terms than Euler's method) is used to solve u' = t(1+u), write u_{n+1} in terms of h, t_n and u_n only. $(t_n = nh, u_n \approx u(t_n))$

$$u'' = t(1+u)$$

$$u'' = (1+u) + tu' = (1+t^2)(1+u)$$

$$u''' = (1+t^2)u' + 2t(1+u) = (3t+t^3)(1+u)$$

Math 4329, Final (g)

Name Key

a. Let $T_3(x)$ be the Taylor polynomial of degree 3 which matches f(x), f'(x), f''(x) and f'''(x) at x = 0, where $f(x) = \cos(x/3)$. Find the best possible bound on

 $\max_{-0.5 \le x \le 0.5} |T_3(x) - f(x)| \le \left(\frac{f''(\mathcal{E})}{4\ell} \times 4 \right) \le \left(\frac{1}{3} \right)^4 \left(\frac{1}{2} \right)^4 = 3.2 \cdot 10^{-5}$

b. Let $L_3(x)$ be the Lagrange polynomial of degree 3 which matches f(x) at x = -2, -1, 1 and 2, where f(x) = cos(x/3). Find the best possible bound on

 $|L_3(0) - f(0)| \le \left| \frac{f''(c)}{24} 2(1)(1)(2) \right| \le \frac{1}{6} \left(\frac{1}{3} \right)^4 = \left(\frac{1}{3} \right)^6 = \left(\frac{$

2. a. A root finder gives consecutive errors of $e_8 = 10^{-3}$, $e_9 = 10^{-5}$, $e_{10} = 10^{-11}$. Estimate the order of the method.

 $10^{-5} = M(10^{-3})^{\kappa}$ $10^{-11} = M(10^{-5})^{\kappa}$ $10^{-11} = M(10^{-5})^{\kappa}$

b. A quadrature method gives an error of 10^{-5} when $h = 10^{-2}$ and 10^{-11} when $h = 10^{-4}$. Estimate the order of the method.

 $10^{-5} = M(10^{-2})^{4}$ $10^{-11} = M(10^{-4})^{4}$ $10^{6} = (0^{2})^{4}$ (4 = 3)

3. Use the inverse power method to determine the smallest eigenvalue of

$$A = \begin{bmatrix} \frac{4}{6} & \frac{-2}{6} \\ \frac{-5}{6} & \frac{1}{6} \end{bmatrix} \qquad A^{-1} = \begin{bmatrix} -1 & -2 \\ -5 & -4 \end{bmatrix}$$

Start the iteration with $(x_0, y_0) = (3, 8)$.

4. Take one step of a third order Taylor series method (Euler is the first order Taylor method) to approximate the solution of the following problem, at t = 1.01:

lem, at
$$t = 1.01$$
:
 $u' = 2tu$

$$u(1) = 1$$

$$u'' = 2tu'' + 2u = 2(2) + 2(1) = 6$$

$$u''' = 2tu'' + 4u' = 2(1)(6) + 4(2) = 20$$

$$u(1+h) = u(1) + u'(1)h + u''(1)\frac{h^{2}}{2} + u'''(1)\frac{h^{3}}{6}$$

$$= 1 + 2h + 6\frac{h^{2}}{2} + \frac{20}{6}h^{3} = \frac{1}{1020303337}$$

5. Do one iteration of Newton's method, starting from (0,0), to solver

$$f(x,y) = 2x^{2} + y - 1 = 0$$

$$g(x,y) = -2x + y^{2} + 1 = 0$$

$$\begin{array}{c}
\begin{pmatrix}
x_{1+1} \\
y_{1+0}
\end{pmatrix} = \begin{pmatrix}
x_{1} \\
y_{1}
\end{pmatrix} - \begin{pmatrix}
4x_{1} \\
-2 & 2y_{1}
\end{pmatrix} \cdot \begin{pmatrix}
4 \\
1
\end{pmatrix} \\
= \begin{pmatrix}
6 \\
0
\end{pmatrix} - \begin{pmatrix}
0 & 1 \\
-2 & 0
\end{pmatrix} \cdot \begin{pmatrix}
-1 \\
1
\end{pmatrix} \neq \begin{pmatrix}
0.5 \\
1
\end{pmatrix}$$

6. Write $\sqrt{1+x}-1$ in a form where there is no serious problem with roundoff, when $x \approx 0$.

7. Determine the degree of precision of the quadrature rule:

$$\int_0^h f(x)dx \approx \frac{h}{4}f(0) + \frac{3h}{4}f(\frac{2h}{3})$$

$$f=1 \qquad h = \int_0^h 1 \, dx = \frac{1}{4} + \frac{3h}{9} = h$$

$$f=x \qquad \frac{h^2}{2} = \int_0^h x \, dx = \frac{3h}{4} \frac{2h}{3} = \frac{1}{2} h^2$$

$$f=x^3 \qquad \frac{h^2}{4} = \int_0^h x^3 \, dx = \frac{3h}{4} \frac{2h}{3}^2 = \frac{1}{4} h^2$$

$$f=x^3 \qquad \frac{h^4}{4} = \int_0^h x^3 \, dx = \frac{3h}{4} \frac{2h}{3}^2 = \frac{2h}{4} h$$

8. Will the iteration $x_{n+1} = 2 - \frac{3}{2}x_n + \frac{1}{2}x_n^3$ converge to the root 1, if the starting guess is sufficiently good? Justify your answer.

$$2 g(x) = 2 - \frac{7}{2} \times + \frac{1}{2} \times^3 g(1) = 1$$

$$g'(x) = -\frac{3}{2} + \frac{3}{2} \times^2 g'(1) = 0 \text{so yer}$$

Do the true/false problem (last problem) and 8 of the other 9 problems. Clearly mark which problem NOT to grade.

1. Let $T_4(x)$ be the Taylor polynomial of degree 4 which matches f(x), f'(x), f''(x), f'''(x)and $f^{iv}(x)$ at x=2, where $f(x)=e^{x/3}$. Find a reasonable bound on

- $\max_{0 \le x \le 4} |T_4(x) f(x)| \le \left| \frac{f'(\varepsilon)}{5!} (x 2)^5 \right| \le \frac{1}{3^5} e^{(\varepsilon/3)} 2^5$ $\le \left(\frac{2}{3} \right)^5 e^{\frac{2}{3}}$ = 0.00416
- 2. Let $p_4(x)$ be the fourth degree polynomial which satisfies $p_4(x_i)$ $f(x_i)$, i=0,1,2,3,4, where $f(x)=e^{x/3}$. Give a formula for the error $f(x) - p_4(x)$ at an arbitrary point x.

 $f(x) - p_{4}(x) = f'(c) (x-x_{3}) (x-x_{4}) (x-x_{3}) (x-x_{4})$ $= \frac{1}{243} e^{-(c)} (x-x_{3}) (x-x_{4}) (x-x_{4}) (x-x_{3}) (x-x_{4})$

3. Determine the degree of precision and (global) order of the quadra rule:

 $\int_0^h f(x)dx \approx \frac{h}{8}f(0) + \frac{3h}{8}f(\frac{h}{3}) + \frac{3h}{8}f(\frac{2h}{3}) + \frac{h}{8}f(h)$ んごまかず十歩十年二十分 まんがと 34 23 +36 863 + 46 2 = 女んな まなべ 3/1 イナイン 16ん + 上人 = 33ん 4. Use the power method to approximate the largest eigenvalue and the associated eigenvector of

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 8 & 1 \\ 0 & 1 & 1 \end{bmatrix} \qquad \begin{cases} \checkmark_{0} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ & &$$

5.
$$f_1(x,y) = x + y + 3$$

 $f_2(x,y) = 2x + y$

Do two iterations of Newton's method, to find a root of
$$f_1 = f_2 = 0$$
, starting from $(x_0, y_0) = (1, 1)$.

6. Consider the problem

$$u' = -u^2$$

 $u(1) = 2$
 $u'' = -2u(-u^2) = 2u^3$

Take one step of a second order Taylor series method with
$$h = 0.01$$
 to approximate $u(1.01)$.

$$u(1) = 2$$

$$u(1) + u'(1)h + 2u'(1) + 2u'(1)h^{2}$$

$$u'(1) = -4$$

$$= 2 - 4h + 16h^{2} = 2 - 4h + 16h^{2}$$

$$u''(1) = 16$$

$$2$$

$$1,9608$$

7. a. Write the third order differential equation $u''' - 3u'' - u' = t^2$ as a system of three first order equations, that is, in the form:

$$u' = f(t, u, v, w) = V'$$

 $v' = g(t, u, v, w) = W'$
 $w' = h(t, u, v, w) = 3 W + V + A^{2}$

b. Now write out the formulas for $u_{n+1}, v_{n+1}, w_{n+1}$ for Euler's method applied to this system of first order equations:

$$u_{n+1} = u_n + h V_n$$

$$v_{n+1} = V_n + h w_n$$

$$w_{n+1} = w_n + h (3w_n + V_n + h^2)$$

8. Will the iteration $x_{n+1} = 4x_n(1 - x_n)$ converge when x_0 is sufficiently close to the root $r = \frac{3}{4}$? (Justify your answer theoretically, without actually iterating the formula.)

$$g(x) = 4x(1-x) = 4x-4x^{2}$$

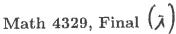
 $g'(x) = 4-8x$
 $g'(3x) = 4-8(2x)$ (10)

9. Will the following iteration converge (to something)? (Justify your answer theoretically, without actually iterating the equations.)

$$\begin{bmatrix} x_{n+1} \\ y_{n+1} \end{bmatrix} = \begin{bmatrix} 0.5 & 0.75 \\ -0.75 & 0.5 \end{bmatrix} \begin{bmatrix} x_n \\ y_n \end{bmatrix} + \begin{bmatrix} 2 \\ -4 \end{bmatrix}$$

$$\begin{cases} 0.5 + 1 & 0.75 \\ -0.75 & 0.5 - 1 \end{cases} = 0 \qquad \lambda = 0.5 \pm 0.752 \\ |\lambda| = \sqrt{.8125} = 90 \end{cases}$$

- a. Serious roundoff error can usually be traced to operations involving multiplication or division.
- b. The experimental order of convergence is $O(h^3)$ if a quadrature rule yields errors of 0.0032 when h = 0.01 and 0.0002 when h = 0.0025.
- c. If a root-finder gives three consecutive errors of 10^{-5} , 10^{-7} and 10^{-11} , the experimental order is quadratic (2)?
- d. Of all quadrature rules with n sample points per strip, the Gauss n
 point formula has the highest order of accuracy.
 - e. A disadvantage of the Runge-Kutta methods is that they require several starting values.
- f. It is easier to vary the stepsize for a Runge-Kutta method than an Adams multistep method.
- g. Taylor series methods are not widely used by general purpose ODE solvers because they require that the user supply derivatives of f(t, u).
- h. If f(r) = f'(r) = 0, Newton's method will converge quadratically to r if x_0 is sufficiently close to the root r.
- Two i. Euler's method is equivalent to a first order Taylor series method.
- j. The Gauss-Seidel iterative method (for Ax = b) is generally faster than the Jacobi method.
- k. The Jacobi iterative method (for Ax = b) converges only if the matrix is diagonal-dominant.
- l. Gaussian elimination, when applied to a general N by N linear system, requires $O(N^4)$ arithmetic operations.
- m. If s(x) is a cubic spline, then s, s' and s'' must be continuous everywhere.
- n. If a quadrature method is exact for all polynomials of degree n, its global error is $O(h^{n+1})$ for general smooth functions.
- o. If Gaussian elimination is used with NO pivoting, large roundoff errors may result even if A is well-conditioned.
- p. If Gaussian elimination is used with partial pivoting, the solution is usually very accurate even if A is ill-conditioned.



1. Use the power method to find the largest (in absolute value) eigenvalue of

$$\left[\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 10 & 1 \\ 0 & 1 & 1 \end{array}\right]$$

Start with (1,5,1) and do 3 iterations. What is the corresponding

 $\begin{pmatrix} 1 \\ 5 \\ 1 \end{pmatrix} \rightarrow \begin{pmatrix} 50 \\ 50 \\ 58 \end{pmatrix} \rightarrow \begin{pmatrix} 58 \\ 532 \\ 58 \end{pmatrix} \rightarrow \begin{pmatrix} 590 \\ 5436 \\ 590 \end{pmatrix} \begin{pmatrix} \lambda = (0.2 \\ 2 = (0.108) \\ 2 = (0.108) \end{pmatrix}$

$$z = (0.2)$$

$$z = (0.108)$$

$$z = (0.108)$$

a. Write the third order differential equation u''' + 4u'' + 5u' + 2u =2. $2t^2 + 10t + 8$ as a system of three first order equations, that is, in the form:

$$u' = f(t, u, v, w) = V$$

$$v' = g(t, u, v, w) = W$$

$$w' = h(t, u, v, w) = -4w - 5v - 2u + 2t^2 + 10t + 8$$

b. Now write out the formulas for $u_{n+1}, v_{n+1}, w_{n+1}$ for Euler's method applied to this system of first order equations:

$$u_{n+1} = U_n + h V_n$$

$$v_{n+1} = V_n + h W_n$$

$$w_{n+1} = W_n + h \left(-4w_n - 5v_n - 2u_n + 2t_n^2 + 10t_n + 8 \right)$$

3. If the third order Taylor series method (two more terms than Euler's method) is used to solve
$$u' = -u^2$$
, write u_{n+1} in terms of h , t_n and u_n only. $(t_n = nh, u_n \approx u(t_n))$
$$u'' = -2uu' = -2u(-u^2) = 2u^3$$

$$u''' = 6u^2u' = 6u^2(-u^2) = -6u^4$$

$$u''' = 6u^2u' = 6u^2(-u^2) = -6u^4$$

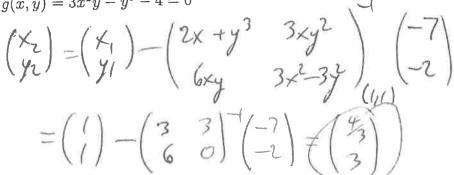
4. Do one iteration of Newton's method, starting from (1,1), to solve:

$$f(x,y) = x^{2} + xy^{3} - 9 = 0$$

$$g(x,y) = 3x^{2}y - y^{3} - 4 = 0$$

$$\begin{pmatrix} x_{2} \\ y_{1} \end{pmatrix} = \begin{pmatrix} x_{1} \\ y_{1} \end{pmatrix} - \begin{pmatrix} 2x + y^{3} & 3x \\ 6xy & 3x \end{pmatrix}$$

$$= \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 3 & 3 \end{pmatrix} \begin{pmatrix} 4 \\ -7 \end{pmatrix}$$



a. A rootfinder produces consecutive root estimates of 2.1, 2.001, 2.000001, 5. when the exact root is r=2. Estimate the order of the method.

$$|00| = M(1)^{\circ}$$

$$|000| = M(1)^{\circ}$$

b. A differential equation approximation produces the approximation u(1) = 2.001 when h = 0.01 and u(1) = 2.000001 when h = 0.001. If the true solution is u(1) = 2, estimate the order of the method used.

6. How should A, r be chosen to make the approximation:

$$\int_{-1}^{1} f(x)dx \approx Af(-r) + Af(0) + Af(r)$$

as high degree of precision as possible?

as high degree of precision as possible?

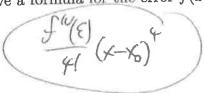
$$2 = \int_{1}^{1} | dx = A + A + A$$

$$0 = \int_{1}^{1} \times dx = A(r) + A(0) + A(1) = 0$$

$$3 = \int_{1}^{1} x^{2} dx = A(r^{2} + A(1)^{2} + A(1)^{2} + A(1)^{2} = \frac{4}{3}r^{2}$$

a. If $p_3(x)$ is the third degree (Lagrange) polynomial which satisfies 7. $p_3(x_i) = f(x_i), i = 0, 1, 2, 3$, give a formula for the error f(x) $p_3(x)$ at an arbitrary point x.

b. If $T_3(x)$ is the third degree (Taylor) polynomial which satisfies $T_3(x_0) = f(x_0), T_3'(x_0) = f'(x_0), T_3''(x_0) = f''(x_0), T_3'''(x_0) = f'''(x_0),$ give a formula for the error $f(x) - T_3(x)$ at an arbitrary point x.



8. Will the iteration $x_{n+1} = \frac{1}{x_n-1}$ converge to the root 1.618, if the starting guess is sufficiently good? Justify your answer.

$$g(x) = \pm 1$$
 $g'(x) = \frac{1}{(x-1)^2}$ $g'((x-6)(8)) = -2,618$

9. Consider the linear system:

$$\left[\begin{array}{cc} 1+\epsilon & 1\\ 1 & 1+\epsilon \end{array}\right] \left[\begin{array}{c} x\\ y \end{array}\right] = \left[\begin{array}{c} 3\\ 4 \end{array}\right]$$

True or False:

- a. If $\epsilon > 0$ the Jacobi iterative method for solving this system will converge to the true solution, no matter what starting point (x_0, y_0) is used.
 - b. If ϵ is close to 0, this matrix will have a large condition number.

True

Math 4329, Final

Name Key

1. Use the power method to find the largest (in absolute value) eigenvalue of

Start with (1,5,1) and do 3 iterations. What is the corresponding

eigenvector?
$$\times_0 = \begin{pmatrix} \frac{1}{5} \end{pmatrix} \times_1 = \begin{pmatrix} \frac{1}{5} \end{pmatrix} \times_2 = \begin{pmatrix} \frac{1}{5} & \frac{1}{5}$$

a. If $p_4(x)$ is the fourth degree Lagrange polynomial which satisfies $p_4(x_i) = f(x_i), i = 0, 1, 2, 3, 4$, give a formula for the error f(x) $p_4(x)$ at an arbitrary point x.

F(x)-P+(x) = F(E) (x-x) (x-x) (x-x) (x-x)

b. If $T_4(x)$ is the fourth degree Taylor polynomial which satisfies $T_4(a) = f(a), T'_4(a) = f'(a), T''_4(a) = f''(a), T'''_4(a) = f'''(a), T'''_4(a) = f'''_4(a), T'''_4(a), T''''_4(a), T'''_4(a), T''''_4(a), T'''_4(a), T'''_$ $f^{iv}(a)$, give a formula for the error $f(x) - T_4(x)$ at an arbitrary point x.

$$f(x) - T_{\varphi}(x) = \left(\frac{f'(\xi)}{5!} (x-a)^5\right)$$

3. If the second order Taylor series method (one more term than Euler's method) is used to solve $u' = -tu^3$, write u_{n+1} in terms of h, t_n and u_n . $(t_n = nh, u_n \approx u(t_n))$

$$u_{n}. (t_{n} = nh, u_{n} \approx u(t_{n}))$$

$$u'' = -u^{3} - t3u^{2}u' = -u^{3} + 3t^{2}u^{5}$$

$$u'' = u_{n} + h(-t_{n}u_{n}^{3}) + h^{2}(-u_{n}^{3} + 3t^{2}u_{n}^{5})$$

4. Do one iteration of Newton's method, starting from (0,0), to solve:

$$f(x,y) = \sqrt{x+1} + xy + 3 = 0$$

$$g(x,y) = \sin(x+2y) - \ln(1+x) = 0$$

$$\begin{pmatrix} \times_{1} \\ y_{1} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} - \begin{pmatrix} \frac{1}{2}(x+1)^{\frac{1}{2}} + y \\ Cor(x+2y) - \frac{1}{1+x} & 2cor(x+2y) \end{pmatrix} \begin{pmatrix} 4 \\ 0 \end{pmatrix}$$

$$= -\begin{pmatrix} \frac{1}{2} & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 4 \\ 0 \end{pmatrix} = \begin{pmatrix} 8 \\ 0 \end{pmatrix}$$

5. How should A, r be chosen to make the approximation:

$$\int_{-1}^{1} f(x)dx \approx Af(-r) + Af(0) + Af(r)$$

as high degree of precision as possible? What is the degree of precision

$$f=1 \quad 2=S_{1} \quad 1 \quad d_{X} = A+A+A \qquad A=\frac{3}{3}$$

$$f=X \quad 0=S_{1} \times d_{X} = -rA+Ar=0$$

$$f=X^{2} \quad 3=S_{1} \times d_{X} = Ar^{2}+Ar^{2}=\frac{4}{3}r^{2} \qquad (=-5\frac{1}{2})$$

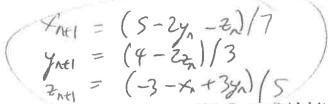
$$f=X^{3} \quad 0=S_{1} \times 3d_{X} = -Ar^{3}+Ar^{3}=0 \qquad d_{x} = 3$$

$$f=X^{4} \quad 3=S_{1} \times 4d_{X} \times 3(5\epsilon)^{4}+\frac{3}{3}(5\epsilon)^{4}=\frac{1}{3}$$

6. Consider the linear system:

$$\begin{bmatrix} 7 & 2 & 1 \\ 0 & 3 & 2 \\ 1 & -3 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 5 \\ 4 \\ -3 \end{bmatrix}$$

a. Write out the equations for the Jacobi iterative method for solving this system (don't actually do any iterations).



b. Write out-the equations for the Gauss-Seidel iterative method for solving this system.

c. True or False: the Jacobi iterative method (6a) will converge for any starting vector (x_0, y_0, z_0) . Give a reason for your answer.

d. Given that

$$A^{-1} = \begin{bmatrix} 0.1419 & -0.0878 & 0.0068 \\ 0.0135 & 0.2297 & -0.0946 \\ -0.0203 & 0.1554 & 0.1419 \end{bmatrix}$$

find the condition number of A (using L_{∞} norm). If you were to solve the linear system above using Gaussian elimination with partial pivoting, would you expect serious roundoff errors?

7. Will the iteration
$$x_{n+1} = \frac{3}{4}x_n + 1/x_n^3$$
 converge when x_0 is sufficiently close to the root $r = \sqrt{2}$? (Justify your answer theoretically, without actually iterating the formula.) If it converges, give the order of convergence.

$$g(x) = \frac{3}{4}x_n + 1/x_n^3 \text{ converge when } x_0 \text{ is sufficiently}$$
out actually iterating the formula.) If it converges, give the order of $g(x) = \frac{3}{4}x + \frac{1}{4}x^3$

$$g'(x) = \frac{3}{4}x + \frac{1}{4}x^3$$

$$g'(x) = \frac{3}{4}x + \frac{1}{4}x^3$$

$$g'(x) = \frac{3}{4}x + \frac{1}{4}x^3$$

$$g''(x) = \frac{3}{4}x + \frac{1}{4}x^3$$

8. a. Write the second order differential equation
$$u'' - 5u' - u = sin(t)$$
 as a system of two first order equations, that is, in the form:

$$u' = f(t, u, v) = V$$

$$v' = g(t, u, v) = SV + U + Six(H)$$

b. Now write out the formulas for
$$u_{n+1}, v_{n+1}$$
 for Euler's method applied to this system of first order equations:

$$u_{n+1} = u_n + h(V_n)$$

$$v_{n+1} = V_n + h(SV_n + u_n + 5h(H_n))$$

b. A quadrature method gives an error of
$$10^{-5}$$
 when $h = 10^{-2}$ and 10^{-13} when $h = 10^{-4}$. Estimate the order of the method.

5. A quadrature method gives an error of 10 when
$$h = 10^{-13}$$
 when $h = 10^{-4}$. Estimate the order of the method.

$$10^{-13} \text{ when } h = 10^{-4}. \text{ Estimate the order of the method.}$$

$$10^{-13} \text{ and } (0^{-2})^{-13} \text{ and } (0^{-2})^{-$$

c. A differential equation solver gives an answer
$$u(1) = 0.88888$$
 when $h = 0.1$, and $u(1) = 0.80666$ when $h = 0.01$, and $u(1) = 0.80600$ when $h = 0.001$. Estimate the order of the method.

$$0.08222 = M(0.14 - 0.014)$$

 $0.00066 = M(0.014 - 0.0014)$
 $124.5 = 104 (2 = 2.1)$

Math 4329, Final (k)

Name _______

1. a. Let $T_3(x)$ be the Taylor polynomial of degree 3 which matches f(x), f'(x), f''(x) and f'''(x) at x = 0, where $f(x) = \cos(4x)$. Find the best possible bound on

Find the best possible bound on $\max_{-2 \le x \le 2} |T_3(x) - f(x)| \le \left| \frac{f''(\xi)}{4!} (x-0)^4 \right| \le \left| \frac{f''(\xi)}{24} \left(\frac{f''(\xi)}{24} \right) \right| \le \left| \frac{f''(\xi)}{24}$

3

b. Let $L_3(x)$ be the Lagrange polynomial of degree 3 which matches f(x) at x = -3, -2, 2 and 3, where f(x) = cos(4x). Find the best possible bound on

 $\max_{-2 \le x \le 2} |L_3(x) - f(x)| \le \left(\frac{4^{4} \operatorname{cor}(4\xi)}{24} (x+3) (x+2) (x-2) (x-2) (x-3) \right)$ $\le \frac{4^{4}}{24} 36 = 384$ where $\xi = 0$ where $\xi = 0$

3

2. a. A root finder gives consecutive errors of $e_8 = 10^{-5}$, $e_9 = 10^{-6}$, $e_{10} = 10^{-11}$. Estimate the order of the method.

 $10^{-6} = M(10^{-5})^{\times}$ $10^{-11} = M(10^{-5})^{\times}$ $10^{-11} = M(10^{-5})^{\times}$

2

b. A quadrature method gives an error of 10^{-5} when $h = 10^{-2}$ and 10^{-13} when $h = 10^{-4}$. Estimate the order of the method.

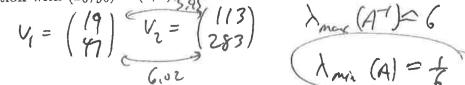
2 10-13 = M (10-4) 4 108 = (104) K X = 4

$$A = \begin{bmatrix} \frac{-4}{6} & \frac{2}{6} \\ \frac{5}{6} & \frac{-1}{6} \end{bmatrix} \qquad A^{-1} = \begin{bmatrix} 1 & 2 \\ 5 & 4 \end{bmatrix}$$

3. Use the inverse power method to determine the smallest eigenvalue of

Start the iteration with $(x_0, y_0) = (3, 8)$, and do 2 iterations.

$$V_0 = \begin{pmatrix} 3 \\ 8 \end{pmatrix}$$



4.
$$x^2 + xy^3 + 3y = 9$$

 $3x^2y - y^3 - 2x = 4$

Do one iteration of Newton's method, to find a root of this system, starting from $(x_0, y_0) = (0, 0)$.

5. Take one step of a second order Taylor series method (Euler is the first order Taylor method) with h = 0.001 to approximate the solution of the following problem, at t = 0.001:

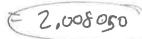
$$u' = 4t + u^3$$
$$u(0) = 2$$

$$U' = 4 + 4^{3}$$

$$U'(0) = 4(0) + 2^{3} = 8$$

$$U'' = 4 + 34^{2}u^{1}$$

$$U''(0) = 4 + 3(2)^{2}(8) = 100$$



6. Will the iteration $x_{n+1} = 2 - \frac{3}{2}x_n + \frac{1}{2}x_n^3$ converge when x_0 is sufficiently close to the root r=1? If so, what is the order of convergence? (Justify your answer theoretically, without actually iterating the formula.)

g(x) = 2-2x+2x3 g(1)=1 $g'(x) = -\frac{7}{4} + \frac{7}{4} \times \frac{2}{4}$ g'(1) = 0 conveyor quadratically $g''(x) = 3 \times \frac{2}{4} \times \frac{1}{4} \times \frac{2}{4} \times \frac{2}{4}$

a. Reduce 7.

$$y'' = 3y'y - e^t z'$$
$$z'' = z'z - \sqrt{y}$$

to a system of 4 first order equations. The right hand sides must involve only t, u1, u2, u3, u4.

involve only
$$t, u1, u2, u3, u4$$
.

 $u1' = u2$
 $u2' = 3(u2)(u1) - e^{t}(u4)$
 $u3' = u4$
 $u4' = (u4)(u3) - 5u1$
 $u4' = (u4)(u3) - 5u1$

b. Now write out the formulas for $u1_{n+1}, u2_{n+1}, u3_{n+1}, u4_{n+1}$ for Euler's method applied to this system of first order equations:

$$u_{n+1} = u_n + \lambda u_n$$

$$u_{n+1} = u_n + \lambda (3 u_n (u_n) - e^{t_n} u_n^{t_n})$$

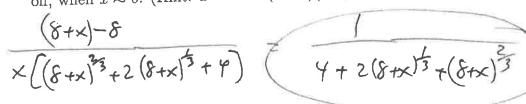
$$u_{n+1} = u_n + \lambda u_n$$

$$u_{n+1} = u_n + \lambda u_n$$

$$u_{n+1} = u_n + \lambda u_n$$

8. Write
$$\frac{(8+x)^{\frac{1}{3}}-2}{x}$$
 in a form where there is no serious problem with round-off, when $x \approx 0$. (Hint: $a^3 - b^3 = (a-b)(a^2 + ab + b^2)$.)

$$\frac{(8+x)-8}{\times \left((8+x)^{\frac{2}{3}}+2 (8+x)^{\frac{1}{3}}+9 \right)}$$



9=(8+x)

9. Consider the linear system:

$$\left[\begin{array}{cc} 1 & 2.0000001 \\ 2 & 4 \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right] = \left[\begin{array}{c} 5 \\ 4 \end{array}\right]$$

a. Write out the equations for the Jacobi iterative method for solving this system (don't actually do any iterations).

b. Write out the equations for the Gauss-Seidel iterative method for solving this system.

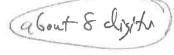
c. Calculate the condition number for this matrix. Hint, if:

$$A = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right], A^{-1} = \left[\begin{array}{cc} d & -b \\ -c & a \end{array} \right] / (ad - bc)$$

If machine precision is $\epsilon = 10^{-16}$, about how many significant figures would you expect in the solution, if Gauss elimination with partial pivoting is used to solve this linear system?

$$A^{-1} = \begin{bmatrix} 4 & -20000001 \\ -2 & 1 \end{bmatrix} \equiv \begin{bmatrix} 4 & -2 \\ -1 & 1 \end{bmatrix} \cdot (-5, 10^6)$$

conta1 = //A/1/1A// = 6.6.5,106 = (1.8,108



1. If the second order Taylor series method (one more term than Euler's method) is used to solve $u' = t^2(1 + u^2)$, write u_{n+1} in terms of h, t_n and u_n only. $(t_n = nh, u_n \approx u(t_n))$

and u_n only. $(t_n = nh, u_n \approx u(t_n))$ $U'' = \frac{1}{2} 2uu' + 2 + (1+u^2)$ $= 2 + \frac{1}{2} u \left(+ \frac{1}{2} (1+u^2) + 2 + (1+u^2) \right)$ $= (2 + 2 + \frac{1}{2} u) (1 + u^2)$ $= (2 + 2 + \frac{1}{2} u) (1 + u^2)$ $= (2 + 2 + \frac{1}{2} u) (1 + u^2)$

2. a. Let $T_4(x)$ be the Taylor polynomial of degree 4 which matches f(x), f'(x), f''(x), f'''(x) and $f^{iv}(x)$ at a = -0.1, where $f(x) = x^6 + x^3$. Use the Taylor remainder formula to find a reasonable bound on

 $|T_4(0) - f(0)| \le \frac{f'(\varphi)}{5!} (0 - (-1))^5 = \frac{720(\varphi)}{120} / 0^{-5} = 6(0.1) / 0^{-5}$

b. Let $L_4(x)$ be the Lagrange polynomial of degree 4 which matches f(x) at x = -0.1, 0.1, 0.2, 0.3 and 0.4, where $f(x) = x^6 + x^3$. Use the Lagrange error formula to find a reasonable bound on

 $|L_4(0) - f(0)| \le \left| \frac{f'(4)}{5!} (0 + 0.1) (0 - 0.1) (0 - 0.2) (0 - 0.3) (0 - 0.4) \right|$ $\le \left| \frac{720(4)}{120} 24.10^{-5} \right| \le 6 (0.4) 24.10^{-5} = 5.76.10^{-4}$

9

a. A rootfinder produces consecutive errors of 0.01, 0.0003, 0.000001. 3. Estimate the order of the method.

$$000001 = M(0.018)^{4}$$
 $300 = (33.3)^{4}$

$$300 = (33.\overline{3})^{4}$$

b. A quadrature method produces estimates of an integral of 5.51 when h = 0.1 and 5.50007, when h = 0.01, and the exact integral is 5.5. Estimate the order of the method.

$$A = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}, A^{-1} = \begin{bmatrix} -1 & 1 & 0 & 1 \\ 1 & 0 & 0 & -1 \\ -1 & 1 & -1 & 2 \\ 1 & -1 & 1 & -1 \end{bmatrix},$$

a. Calculate the condition number of A.

b. Estimate the smallest (in absolute value) eigenvalue of A, and the corresponding eigenvector, using the inverse power iteration. Start with $x_0 = <1, 1, 1, 1 >$ and do 4 iterations.

$$X_1 = A^{-1}X_0 = \begin{pmatrix} 6 \\ 6 \end{pmatrix} \qquad X_2 = \begin{pmatrix} -1 \\ -2 \\ 2 \end{pmatrix} \qquad X_3 = \begin{pmatrix} -3 \\ -27 \\ 21 \end{pmatrix}$$

$$\times_2 = \begin{pmatrix} -\ell \\ -\frac{1}{2} \end{pmatrix}$$

$$x_{4} = \begin{pmatrix} -13 \\ 10 \\ -27 \\ 21 \end{pmatrix}$$

c. Do one iteration of Newton's method, starting from (0,0,0,0) to solve:

$$f1(x1, x2, x3, x4) = x2 + x3 + x4 = 0$$

$$f2(x1, x2, x3, x4) = x1 + x2 - 1 = 0$$

$$f3(x1, x2, x3, x4) = x1 + x4 = 0$$

$$f4(x1, x2, x3, x4) = x3 + x4 = 0$$

(Hint: notice that the Jacobian matrix is just A.)

5. How should A, B, r be chosen to make the approximation:

$$\int_{-1}^{1} f(x)dx \approx Af(-r) + Bf(0) + Af(r)$$

as high degree of precision as possible?

$$2 = S_{1}^{1} | d_{x} = A + B + A$$

$$0 = S_{1}^{1} \times d_{x} = 0$$

$$2 = S_{1}^{1} \times d_{x} = 0$$

$$2 = S_{1}^{1} \times d_{x} = A(r)^{2} + B(0)^{2} + A(r^{2}) = 2Ar^{2}$$

$$0 = S_{1}^{1} \times d_{x} = 0$$

$$2 = S_{1}^{1} \times d_{x} = 0$$

$$3 = S_{1}^{1} \times d_{x} = 0$$

B=2-2A===B

4

6. Write $\frac{\sqrt{4+x}-2}{x}$ in a form where there is no serious problem with roundoff, when $x \approx 0$.

3 54+x+2 = 1 X 54+x+2 = 54+x+2

7. a. Write the third order differential equation $u''' - 3u'' - u^3 = e^t$ as a system of three first order equations, that is, in the form:

 $\begin{array}{ll} u' = f(t, u, v, w) = V \\ v' = g(t, u, v, w) = W \\ w' = h(t, u, v, w) = 3\omega + \omega^3 + e^{\frac{1}{2}} \end{array}$

b. Now write out the formulas for $u_{n+1}, v_{n+1}, w_{n+1}$ for Euler's method applied to this system of first order equations:

 $u_{n+1} = u_n + \lambda v_n$ $v_{n+1} = v_n + \lambda u_n$ $w_{n+1} = w_n + \lambda (3w_n + u_n^3 + e^{\frac{t}{2}n})$

8. Will the iteration $x_{n+1} = 4 x_n (1 - x_n)$ converge to the root 0.75, if the starting guess is sufficiently good? **Justify** your answer.

 $\frac{g(k) = \frac{4}{x}(1-x) = \frac{4}{x} - \frac{4}{x^2}}{g(k) = \frac{4}{x} - \frac{8}{x}} = \frac{4}{x^2} - \frac{2}{x^2} = \frac{30}{x^2}$

Math 4329, Final (*O*)

Name _______

1. a. Let $T_4(x)$ be the Taylor polynomial of degree 4 which matches f(x), f'(x), f''(x), f'''(x) and $f^{iv}(x)$ at x = 1, where $f(x) = e^{-2x}$.

Find a reasonable bound on
$$|T_4(1.2) - f(1.2)| \le |f'(c)(x-1)^s| = |32e^{-2c}(0.2)^s|$$

$$\le 32e^{-2}(0.2)^s = |15\cdot 10^{-s}|$$

$$| \le (0.2)^s = |1.2|$$

b. Let $L_4(x)$ be the Lagrange polynomial of degree 4 which matches f(x) at x = 0, 0.5, 1, 1.5 and 2, where $f(x) = e^{-2x}$. Find a reasonable bound on

$$|L_{4}(1.2) - f(1.2)| \leq \left| \frac{f'(c)}{5!} (1.20)(1.2-0.5)(1.2-1)(1.2-1.5)(1.2-2) \right|$$

$$\leq \left| \frac{32 e^{-2c}}{120} q_{0} q_{0} \right| = \frac{32}{120} (0.040) = 0.0107$$

$$0 \leq c \leq 2$$

2. If a = 0, b = 1000 and f(a) and f(b) have opposite signs, how many bisection iterations are required to find a root between a and b to an accuracy of 10^{-8} ?

$$\frac{1000}{2^{n}} = 10^{-8}$$

$$2^{n} = \frac{1}{6}$$

$$1 = \frac{1}{6}$$

$$1 = \frac{1}{6}$$

Reduce
$$y'' = 3y'y - e^{t}z$$

$$z'' = z'z - \sqrt{y}$$

$$U_{3} = 2$$

$$U_{4} = 3$$

to a system of 4 first order equations. The right hand sides must involve only t, u_1, u_2, u_3, u_4 . The left hand sides must be u'_1, u'_2, u'_3, u'_4 respectively.

$$u_1' = u_2$$
 $u_1' = 3u_2u_1 - e^*u_3$
 $u_3' = u_4$
 $u_4' = u_4u_3 - \sqrt{u_1}$

a. A root finder gives consecutive errors of $e_8 = 10^{-3}$, $e_9 = 10^{-5}$, $e_{10} = 10^{-5}$ 10⁻¹². Estimate the order of the method.

$$10^{7} = (10^{2})^{10} = 3.5$$

b. A quadrature method gives an error of 10^{-5} when $h=10^{-2}$ and 10^{-12} when $h = 10^{-4}$. Estimate the order of the method.

$$10^{-5} = 10(0^{-2})^{10}$$
 $10^{-12} = 10(0^{-2})^{10}$
 $10^{-12} = 10(0^{-2})^{10}$
 $10^{-12} = 10(0^{-2})^{10}$
 $10^{-12} = 10(0^{-2})^{10}$

c. A differential equation solver gives an answer u(1) = 1.08888 when h = 0.1, and u(1) = 1.00666 when h = 0.01, and u(1) = 1.00600when h = 0.001. Estimate the order of the method.

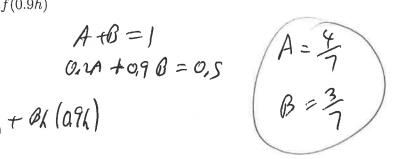
$$|25| = \frac{(-1)^{\alpha} - (-1)^{\alpha}}{(-1)^{\alpha} - (-1)^{\alpha}} = |0|^{\alpha}$$

$$\alpha = 2.1$$

5. Find A, B which make the approximation

$$\int_0^h f(x)dx \approx Ahf(0.2h) + Bhf(0.9h)$$

as high order as possible.



6. Use the inverse power method to determine the smallest eigenvalue of

$$A = \begin{bmatrix} \frac{4}{6} & \frac{-2}{6} \\ \frac{-5}{6} & \frac{1}{6} \end{bmatrix}$$

Start the iteration with
$$(x_0, y_0) = (3, 8)$$
.

$$\begin{aligned}
\mathcal{T}_0 &= \begin{pmatrix} 3 \\ 8 \end{pmatrix} & \mathcal{T}_1 &= \begin{pmatrix} -19 \\ -41 \end{pmatrix} & \mathcal{T}_2 &= \begin{pmatrix} 1/3 \\ 283 \end{pmatrix} & \mathcal{T}_3 &= \begin{pmatrix} -1697 \\ -1697 \end{pmatrix}
\end{aligned}$$

7. Will the iteration
$$x_{n+1} = 2 - \frac{3}{2}x_n + \frac{1}{2}x_n^3$$
 converge when x_0 is sufficiently close to the root $r = 1$? If so, what is the order of convergence? (Justify your answer theoretically, without actually iterating the formula.)

$$g(x) = 2 - \frac{2}{5}x + \frac{1}{5}x^3$$

 $g'(x) = -\frac{2}{5}x + \frac{1}{5}x^5$
 $g''(x) = 3x$

$$g'(r) = 0$$

 $g''(r) = 3$

Converger quadratically

8. If the second order Taylor series method (one more term than Euler's method) is used to solve $u' = t^2 \sqrt{1 + u^2}$, write u_{n+1} in terms of h, t_n and u_n only. $(t_n = nh, u_n \approx u(t_n))$

$$U'' = \frac{1}{2}(1+u^2)^{\frac{1}{2}} 2uu' + 2*(1+u^2)^{\frac{1}{2}} = \frac{1}{2}(1+u^2)^{\frac{1}{2}} = \frac{1}(1+u^2)^{\frac{1}{2}} = \frac{1}{2}(1+u^2)^{\frac{1}{2}} = \frac{1}{2}(1+u^2)^{$$

9. Do two iterations of Newton's method, starting from (0,0), to solve:

$$f(x,y) = 2x + y - 4 = 0$$

$$g(x,y) = -6x + y + 4 = 0$$

$$4 \left(\frac{4}{2}\right) = \binom{0}{0} - \left(\frac{2}{6}\right) \cdot \binom{4}{4} = \binom{1}{6} \cdot \binom{4}{4} = \binom{1}{2} \cdot \binom{4}{4} = \binom{1}{4} \cdot \binom{4}{4} = \binom{4}{4} = \binom{4}{4} \cdot \binom{4}{4} = \binom{4}$$

10. Will the following iteration converge (to something)? Justify your answer without actually iterating.

$$\begin{bmatrix} x_{n+1} \\ y_{n+1} \end{bmatrix} = \begin{bmatrix} 0.5 & 0.75 \\ -0.75 & 0.5 \end{bmatrix} \begin{bmatrix} x_n \\ y_n \end{bmatrix} + \begin{bmatrix} 2 \\ -4 \end{bmatrix}$$