Math 5330, Test I

Name ___________________________

1. If

\[
A = \begin{bmatrix}
0 & 3 & 1 \\
-4 & 2 & 1 \\
8 & 2 & 3
\end{bmatrix}
\]

find a permutation matrix \( P \), a lower triangular matrix \( L \), and an upper triangular matrix \( U \) such that \( A = PLU \).

2. An \( N \) by \( N \) band matrix has \( K \) non-zero diagonals below the main diagonal and \( L \) above. If \( 1 << K, L << N \), approximately how many multiplications are done:

a. during the forward elimination, if no pivoting is done?
b. during the forward elimination, if partial pivoting is done?
c. during back substitution, if no pivoting is done?
d. during back substitution, if partial pivoting is done?
3. a. Prove that the Jacobi method:

\[ x_{i}^{n+1} = \frac{1}{a_{ii}} \left( b_{i} - \sum_{j \neq i} a_{ij}x_{j}^{n} \right) \]

converges, if \( A \) is diagonal dominant.

b. Prove that the Gauss-Seidel method:

\[ x_{i}^{n+1} = \frac{1}{a_{ii}} \left( b_{i} - \sum_{j < i} a_{ij}x_{j}^{n+1} - \sum_{j > i} a_{ij}x_{j}^{n} \right) \]

converges, if \( A \) is diagonal dominant.
4. Which of the following linear systems would you expect to produce the most relative round-off error, using Gauss elimination with partial pivoting? Justify your answer.

\[
\begin{bmatrix}
10^{-9} & 10^{-8} \\
10^{-8} & 10^{-9}
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix} = \begin{bmatrix}
1 \\
1
\end{bmatrix}
\]

\[
\begin{bmatrix}
1000 & 1001 \\
-999 & -1000
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix} = \begin{bmatrix}
1 \\
1
\end{bmatrix}
\]

\[
\begin{bmatrix}
10^{-9} & 0 \\
0 & 10^9
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix} = \begin{bmatrix}
1 \\
1
\end{bmatrix}
\]

5. Define:

a. orthogonal matrix

b. lower Hessenberg matrix

c. positive definite matrix

d. \( \|x\|_p \), if \( x \) is a vector and \( 1 \leq p < \infty \)

e. \( \|A\|_p \), if \( A \) is a matrix
6. The following Fortran program solves a linear system \( Ax = b \) with symmetric matrix \( A \), using Gauss-Jordan without pivoting, but taking advantage of symmetry. For large \( N \), approximately how many multiplications are done? Show your work.

```fortran
SUBROUTINE DLINQ(A,N,X,B)
    DOUBLE PRECISION A(N,N),X(N),B(N),LJI
    C REDUCTION TO DIAGONAL
    DO 50 I=1,N
    C ELIMINATE ELEMENTS ABOVE DIAGONAL IN COLUMN I
    DO 20 J=1,I-1
        LJI = A(J,I)/A(I,I)
        DO 10 K=I,N
            A(J,K) = A(J,K) - LJI*A(I,K)
        10 CONTINUE
        B(J) = B(J) - LJI*B(I)
    20 CONTINUE
    C ELIMINATE ELEMENTS BELOW DIAGONAL IN COLUMN I.
    C TAKE ADVANTAGE OF SYMMETRY HERE.
    DO 40 J=I+1,N
        LJI = A(I,J)/A(I,I)
        DO 30 K=J,N
            A(J,K) = A(J,K) - LJI*A(I,K)
        30 CONTINUE
        B(J) = B(J) - LJI*B(I)
    40 CONTINUE
    50 CONTINUE
    C SOLVE DIAGONAL SYSTEM
    DO 55 I=1,N
        X(I) = B(I)/A(I,I)
    55 CONTINUE
RETURN
END
```