Math 5330 Final Exam

Name _____

- 1. What is the order of work for each of the following? Assume all matrices are N by N and full unless otherwise stated, and assume advantage is taken of any special structure mentioned.
 - a. One iteration (knock out one element) of the Jacobi method to find the eigenvalues of a symmetric matrix A.
 - b. Solution of Ax = b using Gaussian elimination, if A is upper Hessenberg.
 - c. One QR iteration, if A is full.
 - d. One LR iteration, if A is upper Hessenberg.
 - e. One QR iteration, if A is symmetric and tridiagonal.
 - f. Reduction to upper Hessenberg form, using orthogonal similarity transformations.
 - g. Solution of min $||Ax b||_2$ using the normal equations, where A is M by N, and M >> N.
 - h. Solution of min $||Ax b||_2$ using orthogonal reduction, where A is M by N, and M >> N.
 - i. One simplex step, for solving max $c^T x$ with $Ax \leq b, x \geq 0$, where A is M by N, and N >> M.
 - j. Solution of Ax = b if an LU decomposition is known.
 - k. One iteration of the inverse power method, for finding the smallest eigenvalue of tridiagonal matrix A.
 - l. Solution of Ax = b using Gaussian elimination, if A is banded, with bandwidth $N^{\frac{1}{3}}$.

2. Use the simplex method to solve:

 $\max P = 3x + 4y$ with

 $\begin{array}{rrrrr} x+y &\leq & 6\\ 2x+y &\leq & 8 \end{array}$

and $x, y \ge 0$

3. Write the (symmetric) dual to the previous problem, and set up the initial simplex tableaux, with slack and artificial variables.

4. Find the straight line y = p + qx which most closely fits the data points (0, 1), (1, 6), (2, 2) in the L_2 norm.

5. Find A, b, c such that the following LP problem, if solved, would produce the straight line which most closely fits the data points of problem 4 in the L_1 norm.

minimize $b^T y$, with $A^T y \ge c$.

Here $y = [p, q, \epsilon_1, \epsilon_2, \epsilon_3]$ is the vector of unknowns. (Note: the dual of this problem would be: maximize $c^T x$, with $Ax \leq b, x \geq 0$, which could actually be solved by the simplex method.)