MATH 5343 Test II

Name_____

1. Consider the method $(U_i^k = U(x_i, t_k))$

$$\frac{U_i^{k+1} - U_i^k}{dt} = \frac{U_i^k - U_{i-1}^k}{dx}$$

a. Calculate the truncation error, when this is used to approximate $u_t = u_x$. What can you say about the consistency of this method?

b. Use the Fourier method to analyze stability, that is, plug in $U_i^k = a_k e^{Imx_i}, I = \sqrt{-1}.$

2. Explain why the fact that the exact solution at (x,t), t > 0 of the heat equation $u_t = Du_{xx}, u(x,0) = h(x)$ depends on the initial conditions at all points x, shows that the usual explicit finite difference method cannot possibly be stable if dt and dx go to 0 with any constant ratio dt/dx = r.

3. Analyze the stability of the following approximation to $u_{tt} = c^2 u_{xx}$:

$$\frac{U_i^{k+1} - 2U_i^k + U_i^{k-1}}{dt^2} = c^2 \frac{U_{i+1}^{k+1} - 2U_i^{k+1} + U_{i-1}^{k+1}}{dx^2}$$

Hint: $e^{\theta} - 2 + e^{-\theta} = -4sin^2(\theta/2)$

4. a. Calculate the truncation error for the following approximation to $u_{xxxx} = 1$, where $U_i = U(x_i)$.

$$\frac{U_{i+2} - 4U_{i+1} + 6U_i - 4U_{i-1} + U_{i-2}}{dx^4} = 1$$

b. Assume the boundary conditions for (a) are $u(0) = u_{xx}(0) = u(\pi) = u_{xx}(\pi) = 0$. Then (a) is a system of linear equations of the form Au = f. Given that the eigenvectors of the matrix A are $W_i = sin(mx_i)$, for integer m, find the eigenvalues. Hint: sin(m(x+dx)) + sin(m(x-dx)) = 2sin(mx)cos(m dx) and $cos(2\theta) = 2cos^2(\theta) - 1$.

c. Write out the Gauss-Seidel iteration to solve the finite difference equations of (a).

d. Is the Gauss-Seidel iteration of part (c) guaranteed to converge? Justify your answer.

- 5. True or False:
 - a. Choosing the shift parameter closer to an eigenvalue will generally make the shifted inverse power method converge more rapidly to this eigenvalue.
 - b. If SOR is applied to solve the equations of Problem 4a, it is guaranteed to converge for $0 < \omega < 2$.
 - c. It is possible to apply the shifted inverse power method to the generalized eigenvalue problem $Az = \lambda Bz$, where A and B are banded matrices, without having to deal with full matrices.
 - d. Successive overrelaxation applied to Ax = b, with $\omega = 1$, is guaranteed to converge if the matrix A is diagonal dominant or positive definite or negative definite.
 - e. For the transport equation $u_t = -\nabla \bullet (u\mathbf{v})$, the boundary conditions should be specified on the part of the boundary where $\mathbf{v} \bullet \mathbf{n}$ is positive.
 - f. The explicit upwind approximation to the transport equation is unconditionally stable.
 - g. For the diffusion equation $u_t = Du_{xx}$, the speed of diffusion is infinite, while for the wave equation $u_{tt} = c^2 u_{xx}$ the velocity is finite.
 - h. If the shifted inverse power method is used to find an eigenvalue of a matrix, with fixed shift, the LU decomposition found on the first iteration can be used on subsequent iterations to decrease the computer time for these iterations.
 - i. If an implicit finite difference method is used to solve $U_t = U_{xx} + U_{yy} + U_{zz}$, you will need to solve a large linear system each time step which is banded, but sparse even inside the band.
 - j. Nonlinear overrelaxation generally takes more work per iteration than Newton's method, but fewer iterations to converge.