MATH 5343 Final

1. We want to solve the PDE $-\nabla^2 U + U = f(x, y)$, with $\frac{\partial U}{\partial n} = -U + g(x, y)$ on the boundary. If a Galerkin finite element method is used, and U is expanded as a linear combination of basis functions $U(x, y) = \sum_{i=1}^{N} a_i \phi_i(x, y)$, a linear system of the form $A\mathbf{a} = \mathbf{b}$ will result. What are the elements A_{ki}, b_k of matrix A and vector \mathbf{b} . How many continuous derivatives must $\phi_i(x, y)$ have? Is A symmetric? Is A positive definite?

Name_____

2. We want to solve the PDE $-\nabla^2 U + U = f(x, y)$, with U = 0 on the boundary. If a collocation finite element method is used, and U is expanded as a linear combination of basis functions $U(x, y) = \sum_{i=1}^{N} a_i \phi_i(x, y)$, where $\phi_i(x, y) = 0$ on the boundary, a linear system of the form $A\mathbf{a} = \mathbf{b}$ will result. What are the elements A_{ki}, b_k of matrix A and vector \mathbf{b} . How many continuous derivatives must $\phi_i(x, y)$ have? Is A symmetric?

3. Give two important advantages of the finite element method over finite difference methods.

- 4. Write out, in an form where no inverses appear, the shifted inverse power iteration for finding the eigenvalue of $A\mathbf{a} = \lambda B\mathbf{a}$ closest to p, and tell how this eigenvalue λ can be found from two consecutive iterates, z_n and z_{n+1} , after convergence.
- 5. Is the following approximation consistent with u' = f(t, u), and is it stable? What is the order $O(h^{\alpha})$ of the error at a fixed t? $\frac{U(t_{k+1})-U(t_{k-2})}{3h} = \frac{1}{2}f(t_k, U(t_k)) + \frac{1}{2}f(t_{k-1}, U(t_{k-1})).$

6. a. Under what conditions is the following method (to approximate $u_{tt} = u_{xx}$) stable, where $U_i^k \equiv U(x_i, t_k)$ (justify answer)? (Hint: $e^{Imdx} - 2 + e^{-Imdx} = -4sin^2(m * dx/2)$)

$U_i^{k+1} \!-\! 2 U_i^k \!+\! U_i^{k-1}$	_	$U_{i+1}^{k-1} - 2U_i^{k-1} + U_{i-1}^{k-1}$		$U_{i+1}^k - 2U_i^k + U_{i-1}^k$	1	$U_{i+1}^{k+1}\!-\!2U_i^{k+1}\!+\!U_{i-1}^{k+1}$
dt^2	_	$\frac{1}{3}$ dx^2	Τ.	$\frac{1}{3}$ $\frac{1}{dx^2}$	ΤĘ	dx^2

b. What is the order $O(dt^n) + O(dx^m)$ of the truncation error? You can just guess!