Problems

1. The Jacobi iterative method 1.9.4 can be written in the form x, 41 =
x,+D7(b— Az, ). Write an MPI-based subroutine JACOBI with argu-
ments (A, JROW,JCOL,NZ X ,B,N), which iterates the Jacobi method to
convergence, to solve an N by N (possibly nonsymmetric) linear system
Ax = b, with sparse matrix A distributed over the available processors.
Solve the system 1.9.10, with M = 40 using a main program similar to
Figure 6.2.5 to test your program. Run with 1 and 2 processors.

2. a. Use PLINEQ (Figure 6.2.1) to solve the linear system 1.9.10, and
output the solution at the midpoint again, to check your answer.
You can use the main program from Figure 6.2.5 to define the
matrix AS in sparse format; then copy AS to an N by N full
matrix A (inefficient for a sparse system such as this, of course),
with columns also distributed over the available processors. You
will need to remove the CALL MPI_INIT in PLINEQ since you are
now initializing MPI in the main program.

Run with 1, 2, 4, and 8 processors, with M = 16.

b. In part (a), although no processor ever touches any columns but
its own, you are still storing the entire N by N matrix on every
processor. This can be avoided, as suggested in the text, by re-
placing every reference to A(I,J) by A(L,(J —1)/NPES +1), in
both the main program and PLINEQ. Then A can be dimensioned
A(N,(N—1)/NPES+1) and each processor will only store its own
columns. However, NPES is not known until execution time, so you
cannot dimension A in a DIMENSION statement; you should use
the FORTRAN90 ALLOCATE statement to dynamically allocate
space for A. This means

ALLOCATABLE A(:,:)

CALL MPI_COMM_SIZE (MPI_COMM_WORLD,NPES,IERR)
ALLOCATE (A(N, (N-1)/NPES+1))

Make these modifications and retest your program. You should be
able to solve problems with larger M now, using many processors.



