
Damped Spring Problem (ODE)

0. To familiarize yourself with PDE2D, first solve the damped spring problem

(1.7, p6):

mu′′ + cu′ + ku = 0, u(0) = 0, u′(0) = 10

where u(t) is the height of the spring above its equilibrium point, so u(0)
and u′(0) are the initial position and velocity of the spring. Take the mass

m = 1, the spring constant k = 101 and the damping coefficient c = 2.

Write this as a system of two first order ordinary differential equations, use

the PDE2D GUI to generate the program, and solve out to about t = 3.

This is a ”0D” time-dependent problem, and the exact solution is u(t) =
e−tsin(10t).

1

1. a. Solve the 1D steady-state beam bending problem of Exercise 4.2.8

(p84):
d2M

dx2
= f(x),M(L) = 0,M ′(L) = 0

d2u

dx2
=

M

EI(x)
, u(0) = 0, u′(0) = 0

where u(x) is the beam displacement and M(x) is the beam moment.

Take E = 10, I(x) = 1, L = 2.5 (E = elastic modulus, I = moment of

inertia, L = beam length). Also, put f(x) = −1, so there is a constant

downward force, namely the weight of the uniform beam itself. The

boundary conditions specify that the beam is clamped at the left end,

and free and unsupported at the right end. Also solve the boundary

problem analytically and compute the L1 norm of the error, that is,

the integral of |u − utrue|. Set E, I, L, f as parameters, so their val-

ues could be easily changed. Note that parameters and variables must

begin with a letter in the range A −H or O − Z, otherwise they will

be integers, for example, L would be rounded down to 2, so use (for

example) RL instead of L.

Use the PDE2D GUI (pde2d gui [name]) which means the collocation

method will be used.

b. Repeat the problem using the Galerkin method. For this you must use

the Interactive Driver (pde2d [name]). Notice that the format for the

PDEs and (especially) the boundary conditions are very different than

for the collocation method, so pay close attention to the documenta-

tion, especially to the hint on how to handle ”mixed” (eg, one fixed,

one free) boundary conditions.

2. a. Solve the 1D time-dependent heat conduction/convection problem of

Example 6.1 (p108):

ρC
∂T

∂t
+ ρCv

∂T

∂z
=

∂

∂z

(

κ
∂T

∂z

)

−
2k

R
(T − Tout), 0 ≤ z ≤ L

where T (z, t) is the temperature of a fluid in a pipe of length L = 5,

and ρ = 1.1, C = 0.18, v = 2.0, κ = 0.1 are the fluid density, spe-

cific heat, velocity and heat conductivity coefficient, respectively. The

initial temperature should be T (z, 0) = T0 + (Tout − T0)z/L, where

2

T0 = 30 is the temperature of the entering fluid and Tout = 10 is the

temperature of the pipe wall and the outlet. Thus the boundary condi-

tions are T (0, t) = T0 and T (L, t) = Tout. Take k/R = 0.2, where k
is the heat transfer coefficient between the fluid and the pipe wall and

R is the pipe radius. Solve this forward in time to t = 2. Note that the

spatial variable must be called x, not z, and you will not be able to call

the temperature T, because T is reserved for time, so call it TMP, and

use names TMP0, TMPout instead of T0,Tout. You can use EITHER

the collocation OR Galerkin method.

b. Now replace the boundary condition at the outlet (z = L) by the non-

linear radiation boundary condition (p68):

−κ
dT

dz
= σ(T 4 − T 4

out
)

with σ = 10−5, where σ is the radiation heat transfer coefficient, and

repeat the problem. You will need to reset the variable LINEAR to

3

.FALSE. (collocation method only), and FDIFF to .TRUE..

c. Repeat problem 2a with no conduction, κ = 0. Now this is the hyper-

bolic transport problem of Example 8.1 (p153), and there should now

be ”no” boundary condition at the outlet, since it is first order in space.

Note that without conduction (diffusion of heat), the discontinuity in

the derivative is not smoothed out now, but simply transported forward

with velocity v.

4

3. In mathematical finance, PDEs similar to the heat equation are often solved.

For example, consider the Black-Scholes PDE, section 5.3.9, p104:

∂u

∂t
+

1

2
σ2x2∂

2u

∂x2
+ rx

∂u

∂x
− ru = 0

Here the solution u(x, t) is the value of a European stock option, which

depends on the time t and the stock price x at that time, σ is the ”volatility”,

and r is the risk-free interest rate. The equation is similar to the backward

heat equation, but it is stable because it is solved backward in time. A ”call”

option gives the option holder the right to buy the stock at the predetermined

strike price E at the maturity time, t = T . At the maturity time, the value

of the option is clearly max(x − E, 0) because if the price then is x, if

x > E, the value of the option is x − E as that is the profit one could

make by immediately reselling at the going price, and if x < E, the value

of the option is 0 because the option buyer will simply not exercise his

option to buy at E. Thus the final condition may be written as u(x, T) =

5

max(x−E, 0), and the equation is solved backward to t = 0. The solution

u(x, 0) represents the amount one should be expected to pay for the option

at a time T before maturity, if the current price is x. If the stock price

reaches 0 at any time, it can be assumed it will never be worth E, so the

option is worthless then, and the left boundary condition is u(0, t) = 0. If

the stock price x reaches very large values, it can be assumed the price will

remain above E, and so the current value of the option is x − Ee−r(T−t),

that is, the current price minus the current value of the strike price. Hence

the other boundary condition can be ∂u

∂x
(Smax, t) = 1.

This equation is solved on p117 of Financial Engineering with Finite El-

ements by Juergen Topper, John Wiley & Sons, 2005, using E = 40, r =
0.1, σ = 0.2, Smax = 100, and T = 0.5. The solution is found both analyti-

cally and using PDE2D there, and both give, for example, u(39, 0) = 2.680.

Use PDE2D to solve this problem, and check your result at x = 39 against

this value. These type of math finance problems are generally easier to

set up using the collocation method, which does not require a ”divergence”

formulation.

6

7

