
4. Consider an arch (half annulus, in 2D) described in polar coordinates as

6 < r < 10, 0 < θ < π. We want to solve the steady-state elasticity

equations in this arch, that is, the equations 5.40 (p104):

0 =
E

2(1 + ν)

(

Uxx + Uyy +
1

1− 2ν
(Uxx + Vyx)

)

+ f1

0 =
E

2(1 + ν)

(

Vxx + Vyy +
1

1− 2ν
(Uxy + Vyy)

)

+ f2

Take E = 100 and ν = 0.2 (E = elastic modulus, ν = Poisson ratio), and

take the external force vector to be (f1, f2) = (0,−10), that is, there is a

constant downward force, namely the weight of the uniform arch itself. On

the two ends touching the ”ground” (θ = 0, π), the displacement vector is

zero, (U, V ) = (0, 0). On the top and bottom of the arch (r = 6, 10), there

are zero external forces, which means the following boundary conditions

are satisfied:

σxxNx + σxyNy = g1
σxyNx + σyyNy = g2

where

σxx = E (1−ν)Ux+νVy

(1+ν)(1−2ν)

σxy = E Uy+Vx

2(1+ν)

σyy = E νUx+(1−ν)Vy

(1+ν)(1−2ν)

are stresses (note: in σxx, the xx does NOT indicate differentiation, it is

just a subscript), (Nx, Ny) is the unit outward normal to the boundary, and

(g1, g2) is the external boundary force vector, in this case g1 = g2 = 0. Nx

and Ny are referenced in the boundary conditions as NORMx and NORMy.
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Plot the resulting displacement vector field, (U, V ), and calculate the inte-

gral of V in the entire arch. (Note: if you use the GUI, it will generate plots

of the gradients (Ux, Uy) and (Vx, Vy) by default, so just change IVAR1 to 1

and IVAR2 to 4 on one of these (in the Fortran) to get a plot of (U, V ).)

If you use the Galerkin method instead of collocation, you need to write the

equations in the form:

∂
∂x
σxx +

∂
∂y
σxy + f1 = 0

∂
∂x
σxy +

∂
∂y
σyy + f2 = 0

which is equivalent to 5.40, in the 2D case. If Galerkin is used, use the initial

triangulation option ITRI = 2, and note that on the free boundary, (g1, g2) =

(GB1,GB2). Stress field plots can also be made, but this is optional.
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5. a. Consider the incompressible fluid flow equations 5.26 (p100):

ρ

(

∂U

∂t
+ U Ux + V Uy

)

= f1− Px + µ(Uxx + Uyy)

ρ

(

∂V

∂t
+ U Vx + V Vy

)

= f2− Py + µ(Vxx + Vyy)

Ux + Vy = 0

where (U, V ) is the fluid velocity vector, and ρ, µ, P are the fluid den-

sity, viscosity and pressure, and we have replaced the gravity force

term in (5.26b) by a more general force vector f = (f1, f2).
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As noted on page 97 (for the 2D case), the fact that the divergence of

the fluid velocity is zero guarantees that there is a ”stream function”

φ such that (U, V ) = (φy,−φx), and the divergence equation 5.26a

(Ux + Vy = 0) is automatically satisfied for any stream function.

Now let us define the ”vorticity” by ω ≡ Uy −Vx = φxx+φyy. Differ-

entiate the first equation above with respect to y, and the second with

respect to x, and subtract, and show (yourself) that the pressure terms

disappear, and that we are left with the equation:

ρ∂ω
∂t

+ ρ(φyωx − φxωy) + f2x − f1y = µ(ωxx + ωyy)

Together with ω = φxx + φyy, we now have a system of two equations

for the two unknowns φ and ω.

In this example we will find the steady-state flow (so the time deriva-

tive term is zero) in a pentagon with vertices at (−1,−1), (1,−1), (1, 1),
(0, 0.2), (−1, 1). We will assume an external force f = (y,−x), which

tends to rotate the fluid around the origin. On the bottom of the pen-

tagon, we will apply ”free-slip” boundary conditions, V = 0, Uy = 0,

and on the other four sides, we will apply ”no-slip” boundary condi-

tions, U = 0, V = 0. Verify that the free-slip conditions are φ =
0, ω = 0, and that the no-slip conditions are equivalent to setting φ to

0 (or any arbitrary constant) and its normal derivative (φxNx + φyNy)

to 0.

Solve this PDE problem, with ρ = 1.1, µ = 0.1, and make vector

plots of the fluid velocity (φy,−φx) and a contour plot of the stream

function. (Hint: set APRINT (1) = φy, BPRINT (1) = −φx and

plot (A1,B1).) Notice that the contours of the stream function are

parallel to the velocity field, because the gradient of φ is normal to a

level curve of φ, and since (φx, φy) • (U, V ) = 0, it is also normal to

the velocity. Also compute the integral of ω. Because of the geometry,

you will have to use the Galerkin method, thus you cannot use the

GUI.

It should be mentioned that an alternative to this stream function ap-

proach, which still works for 3D problems, is the penalty method, in

which the pressure is replaced by P = −α(Ux + Vy +Wz), where α
is a large number. This equation says that a large pressure results in a

small volume decrease, i.e., the fluid is “almost” incompressible.
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b. Increase ρ by a factor of 20 and re-solve the problem; this results in

flow with a larger Reynold’s number. If you have trouble getting con-

vergence of Newton’s method, you may need to multiply the nonlinear

terms by beta = min(1.d0, (T −1)/5.d0), which means the first itera-

tion (T = 1), you are solving a linear problem, and you are increasing

the Reynold’s number gradually over the next 5 iterations.
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