
Advances in Engineering Software 41 (2010) 748–753
Contents lists available at ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier .com/locate /advengsoft
Solving PDEs in non-rectangular 3D regions using a collocation finite
element method

Granville Sewell *

Mathematics Department, University of Texas El Paso, El Paso, TX 79968, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 21 January 2009
Accepted 14 December 2009
Available online 8 January 2010

Keywords:
Finite elements
Collocation
Partial differential equations
0965-9978/$ - see front matter � 2009 Elsevier Ltd. A
doi:10.1016/j.advengsoft.2009.12.015

* Tel.: +1 915 747 6762.
E-mail address: sewell@math.utep.edu
The general-purpose partial differential equation (PDE) solver PDE2D uses a Galerkin finite element
method, with standard triangular elements of up to fourth degree, to solve PDEs in general 2D regions.
For 3D problems, a very different approach is used, which involves a collocation finite element method,
with tricubic Hermite basis functions, and an automatic global coordinate transformation. If the user can
define the 3D region by X ¼ XðP1; P2; P3Þ; Y ¼ YðP1; P2; P3Þ; Z ¼ ZðP1; P2; P3Þ with constant limits on
P1; P2; P3, then the PDEs and boundary conditions can be written in their usual Cartesian coordinate
form and PDE2D will automatically convert the equations to the new coordinate system and solve the
problem internally in this rectangle. The result is that for a wide range of simple 3D regions, once the glo-
bal coordinate system is defined, the rest of the input is as simple as if the region were a rectangle.

� 2009 Elsevier Ltd. All rights reserved.
1. Solving 2D problems with PDE2D

The author began development of a general-purpose partial dif-
ferential equation solver in 1974 and has been working continu-
ously on this project since that date (earliest Ref.: [9]). The
program was marketed by IMSL (now VNI) from 1980 to 1984 un-
der the name TWODEPEP [10], then from 1984 to 1991 as PDE/
PROTRAN [11]. In 1991 the author developed a new version, with
an interactive user interface, which has been sold under the name
PDE2D since that date. In a 1993 Advances in Engineering Software
article [12], the 2D algorithm, which uses the Galerkin finite ele-
ment method with standard isoparametric triangular finite ele-
ments of up to fourth degree, was described in some detail.
PDE2D solves very general, nonlinear steady-state, time-depen-
dent and eigenvalue systems of PDEs, with general boundary con-
ditions, in general 2D regions, with curved boundaries and even
curved interfaces (see Fig. 1). The user supplies an initial triangula-
tion with just enough triangles to define the region, and a graded
or adaptively refined triangulation is generated automatically.
2. Solving 3D problems

In 1994 the author began development of a collocation finite ele-
ment algorithm for 3D problems, which is quite different from the
Galerkin method used for 2D problems. In particular, the way in
which non-rectangular 3D regions are handled will be the primary
focus of this article. This approach cannot handle completely general
ll rights reserved.
3D regions, only ‘‘a wide range of simple 3D regions”; however, for
those regions which can be handled, the PDE2D algorithm has some
important advantages, particularly with respect to ease-of-use.

PDE2D solves three-dimensional, nonlinear, steady-state sys-
tems of the form:

F1ðx; y; z;U1; . . . U1x; . . . U1y; . . . U1z; . . . U1xx; . . . U1yy; . . . U1zz;

. . . U1xy; . . . U1xz; . . . U1yzÞ ¼ 0;
..

.
;

FMðx; y; z;U1; . . . U1x; . . . U1y; . . . U1z; . . . U1xx; . . . U1yy; . . . U1zz;

. . . U1xy; . . . U1xz; . . . U1yzÞ ¼ 0;

in xa 6 x 6 xb; ya 6 y 6 yb; za 6 z 6 zb. It also handles the related
time-dependent and eigenvalue problems, see [[13], Appendix A]
for more detail.

Boundary conditions have the form:

G1ðx; y; z;U1; . . . ;UM;U1x; . . . ;UMx;U1y; . . . ;UMy;U1z; . . . ;UMzÞ
¼ 0;
..

.
;

GMðx; y; z;U1; . . . ;UM;U1x; . . . ;UMx;U1y; . . . ;UMy;U1z; . . . ;UMzÞ
¼ 0:

Periodic and ‘‘no” boundary conditions are also permitted.
For these problems, PDE2D uses a collocation finite element

method, with ‘‘tricubic Hermite” basis functions [7]. That is, each

http://dx.doi.org/10.1016/j.advengsoft.2009.12.015
mailto:sewell@math.utep.edu
http://www.sciencedirect.com/science/journal/09659978
http://www.elsevier.com/locate/advengsoft

Fig. 1. Triangulation of Corpus Christi Bay.

G. Sewell / Advances in Engineering Software 41 (2010) 748–753 749
unknown is assumed to be a linear combination of the 8 NXGRID
NYGRID NZGRID basis functions:

HiðxÞHjðyÞHkðzÞ; HiðxÞHjðyÞSkðzÞ;
HiðxÞSjðyÞHkðzÞ; HiðxÞSjðyÞSkðzÞ;
SiðxÞHjðyÞHkðzÞ; SiðxÞHjðyÞSkðzÞ;
SiðxÞSjðyÞHkðzÞ; SiðxÞSjðyÞSkðzÞ
ði ¼ 1; . . . ;NXGRID; j ¼ 1; . . . ; NYGRID; k ¼ 1; . . . ; NZGRIDÞ;

where the cubic Hermite basis functions Hi and Si are piecewise cu-
bic polynomials with HiðxjÞ ¼ dij; H0iðxjÞ ¼ 0 and SiðxjÞ ¼ 0; S0iðxjÞ¼ dij

([13], p. 183), where the gridpoints xi; yj; zk are not necessarily uni-
formly distributed. This choice of basis function ensures that the
first derivatives of the approximate solution are all continuous, as
required by the collocation method ([14], p. 117). The approximate
solution is required to satisfy the PDEs exactly at 8 collocation
points ðxi þ b1;2ðxiþ1 � xiÞ; yj þ b1;2ðyjþ1 � yjÞ; zk þ b1;2ðzkþ1 � zkÞÞ,
where b1 ¼ 0:5� 0:5=

ffiffiffi
3
p

; b2 ¼ 0:5þ 0:5=
ffiffiffi
3
p

, in each of the
ðNXGRID� 1Þ ðNYGRID� 1Þ ðNZGRID� 1Þ subrectangles, and to sat-
isfy the boundary conditions at certain boundary points. The num-
ber of boundary collocation points plus the number of interior
collocation points is equal to the number of basis functions
ð8 NXGRID NYGRID NZGRIDÞ, so that the number of equations
equals the number of unknowns ðN ¼ 8 NXGRID NYGRID
NZGRID MÞ.

PDE2D actually uses the collocation finite element method for
3D problems, and for 1D and 2D problems it offers both Galerkin
and collocation FEM options. From the above problem description,
it appears that the PDE2D collocation algorithm can only solve
problems in rectangular boxes, but it can actually solve problems
in any 2D or 3D region which can be described by parametric equa-
tions with constant limits on the parameters, as discussed in the
next section, such as spheres, cylinders, tori, parallelopipeds, cones,
ellipsoids, and many more, and for all such regions, high accuracy
ðOðh4ÞÞ solutions are produced (h = maximum element diameter,
see [14], p. 118), assuming appropriate smoothness in the solution.

Although the Galerkin method is easier to apply to general re-
gions, the collocation method is easier to apply to more general
PDEs and boundary conditions, because:
1. The user does not have to manipulate the equations into the
‘‘divergence” form required by the Galerkin method, that is,
the form ðAÞx þ ðBÞy ¼ F (for 2D), where A; B; F may be func-
tions of the solution components and their first derivatives.
While the divergence form is natural for many physical applica-
tions, it is quite unnatural for others, for example, most math
finance applications (eg, [15] p. 249). And it is easy to transform
an equation out of divergence form (unless A or B are not
smooth, then the Galerkin method is to be preferred) but often
difficult, sometimes impossible, to transform an equation or
system of equations into divergence form.

2. Even after a user has manipulated the equations into divergence
form ðAÞx þ ðBÞy ¼ F, if the unknowns are not specified on the
boundary (Dirichlet conditions) the Galerkin method requires
‘‘natural” boundary conditions of the form Anx þ Bny ¼ g, where
ðnx;nyÞ is the outward unit normal to the boundary. Again, these
conditions are indeed ‘‘natural” for many physical applications,
but not for general PDEs. For complicated systems of PDEs, it is
often difficult or impossible to manipulate the boundary condi-
tions into the ‘‘natural” form required by the Galerkin method.

For example, if Laplace’s equation is solved, A ¼ Ux; B ¼ Uy,
standard implementations of the Galerkin method allow only
boundary conditions of the form U ¼ f ðx; yÞ or @U

@n ¼ Uxnxþ
Uyny ¼ gðx; y;UÞ. (We are assuming a 2D problem is solved.) If
one wants to solve Laplace’s equation with Ux ¼ 0 on a boundary
segment that is not an x ¼constant line, one is out of luck with
most Galerkin-based FEM packages. (Actually, the PDE2D Galerkin
method can solve such problems, because g is allowed to depend
on Ux and Uy, but even with PDE2D the set-up of such boundary
conditions is very unnatural; for the collocation method, this
boundary condition can be simply entered as ‘‘Ux ¼ 0”, regardless
of the form of the PDE.)

As with the Galerkin method, Newton’s method is used to solve
the nonlinear algebraic equations resulting from the collocation
method formulation, and again there are several options available
to solve the linear system each Newton iteration (or each time
step, for time-dependent problems; or each shifted inverse power
iteration, for eigenvalue problems). The linear systems generated
by Galerkin finite element methods have symmetric nonzero struc-
tures, even when the matrices themselves are nonsymmetric. The
systems generated by collocation finite element methods, on the
other hand, do not even have symmetric nonzero structures, and
almost all iterative and sparse direct solvers perform poorly on
such systems, so solving these linear systems is challenging.
PDE2D currently offers the following options:

1. The ‘‘normal” equations are formed by multiplying both sides of
Ax ¼ b by AT , and the resulting symmetric, positive definite lin-
ear system is solved using the Harwell sparse direct solver
MA27 [3], a minimal-degree algorithm. The matrix AT A is still
sparse, in fact the normal equations are essentially the equa-
tions that would result if a ‘‘least squares” finite element
method were used, and the nonzero structure of these equa-
tions is exactly the same as for a Galerkin method. Although
the normal equations are significantly more ill-conditioned
than the original equations, this is rarely a problem in practice
for MA27, provided double precision is used.

2. The original equations Ax ¼ b are solved directly by a frontal
method, which is basically an out-of-core band solver. This
option is generally much slower than the others, but requires
a very small amount of memory.

3. The normal equations are solved using a Jacobi conjugate gradi-
ent method, that is, a conjugate gradient method applied to
D�1AT Ax ¼ D�1AT b, where D is the diagonal of AT A. Since AT A
is always symmetric and positive-definite, convergence is

750 G. Sewell / Advances in Engineering Software 41 (2010) 748–753
theoretically guaranteed (assuming infinite precision is used!),
but in practice this iterative solver can converge slowly or not
at all, because the condition number of AT A can be large. On
multi-processor systems, this method is ‘‘MPI-enhanced”, that
is, the matrix-vector multiplications are distributed over the
available processors.

4. Both the PDE2D Galerkin (2D) and collocation (3D) algorithms
have clean interfaces so that the user can easily ‘‘plug in” any
linear system solver desired, to see if it performs better than
the built-in options. Both the original and normal equations
are available in sparse format, already distributed over the
available processors, for multi-processor systems. In fact, an
interface to the very efficient parallel sparse solver MUMPS
([1], http://mumps.enseeiht.fr) is provided. The plug-in inter-
face makes PDE2D a useful tool for testing linear system soft-
ware and algorithms on a wide range of symmetric and
nonsymmetric problems. For an overview of modern algorithms
and available software for the direct and iterative solution of
linear systems, see [2,4–6,8].
3. Nonrectangular 3D regions

When PDE2D was generalized to handle three-dimensional PDE
systems, the logical extension of the 2D algorithm would have
been to use a Galerkin method with (possibly isoparametric) tetra-
hedral elements and require the user to supply an initial ‘‘tetrahed-
ralization” of the region, thereby facilitating the solution of
problems in general 3D regions. But developing a user interface
for defining general regions and boundary conditions is a much
more difficult problem in three dimensions than in two, for reasons
that are obvious and well-known. The decision was made initially,
therefore, to avoid the difficulties in handling general three-dimen-
sional regions, and to develop software that could solve 3D PDE
systems as general as those solved by the 2D algorithm, with com-
parable ease-of-use, but only in 3D boxes.

For 3D problems, then, a collocation finite element method was
selected, with tricubic Hermite basis functions, because the fact
that the Galerkin method is easier to apply to general regions
was now not an issue, and the collocation method has some impor-
tant advantages over the Galerkin brand with regard to ease-of-
use, as discussed in the previous section.

However, after the abilities to handle periodic and ‘‘no” bound-
ary conditions were added, it became possible to solve, with high
accuracy, Oðh4Þ; problems in many simple non-rectangular do-
mains, such as spheres, cylinders, tori, pyramids, ellipsoids, and
cones, by writing the PDEs in terms of an appropriate system of
variables with constant limits. However, rewriting the partial dif-
ferential equations in the new coordinate system was often extre-
mely unpleasant. For example, suppose we want to solve r2U ¼ 1,
in a torus of major radius R0 and minor radius R1. A ‘‘toroidal” coor-
dinate system can be used, where

X ¼ ðR0 þ P3 cosðP2ÞÞ cosðP1Þ;
Y ¼ ðR0 þ P3 cosðP2ÞÞ sinðP1Þ; ð1Þ
Z ¼ P3 sinðP2Þ:

Here X,Y, and Z are Cartesian coordinates, P1 is the major (toroidal)
angle, P2 is the minor (polodial) angle, and P3 is radial distance
from the torus centerline. In the new coordinate system the region
is rectangular, because the limits on P1; P2; and P3 are constants,
and PDE2D can be used to solve this problem. To convert the Lapla-
cian, Uxx þ Uyy þ Uzz, to the new coordinate system, one has to use
the chain rule; for example, Uxx, the second derivative of U with re-

spect to X, is Ui ¼ @U
@Pi ; Uij ¼ @2U

@Pi@Pj

� �
:

Uxx ¼ U11
@P1
@X
þ U12

@P2
@X
þ U13

@P3
@X

� �
@P1
@X

þ U21
@P1
@X
þ U22

@P2
@X
þ U23

@P3
@X

� �
@P2
@X

þ U31
@P1
@X
þ U32

@P2
@X
þ U33

@P3
@X

� �
@P3
@X

þ U1
@2P1
@X2 þ U2

@2P2
@X2 þ U3

@2P3
@X2 :

Transforming PDEs into a new coordinate system can be quite
difficult, however, as is apparent when any of the above partial
derivative terms are displayed. For example, the last term is com-
puted by Mathematica� as:

@2P3
@X2 ¼ �

X2ð�R0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2

p
Þ2

ðX2 þ Y2Þðð�R0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2

p
Þ2 þ Z2Þ3=2

þ X2

ðX2 þ Y2Þ
ffi
ð�R0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2

p
Þ2 þ Z2

q

� X2ð�R0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2

p
Þ

ðX2 þ Y2Þ3=2
ffi
ð�R0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2

p
Þ2 þ Z2

q

þ �R0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2

p ffi
ð�R0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2

p
Þ2 þ Z2

q :

Fortunately, now the need for hand transformations has been
removed: now the user only has to supply the global coordinate
transformation equations (e.g., Eq. (1)) and can then write the PDEs
in their usual Cartesian form. For example, the PDE above would be
written simply as Uxx þ Uyy þ Uzz ¼ 1; PDE2D will automatically
compute Uxx þ Uyy þ Uzz in terms of U11; U12; . . . using the chain
rule, and solve the problem internally in the P1; P2; P3 coordinate
system.

If a cylindrical or spherical coordinate system is used, PDE2D
automatically supplies the first and second derivatives of
P1; P2; P3 with respect to X; Y; Z, required to apply the chain
rule; the user only has to indicate that P1; P2; P3 represent cylin-
drical or spherical coordinates. If another user-specified system is
used, such as toroidal coordinates, PDE2D will use finite differ-
ences to compute the first and second derivatives of X; Y; Z with
respect to P1; P2; P3; alternatively, the user can supply these ana-
lytically. Then PDE2D computes the required derivatives of
P1; P2; P3 with respect to X; Y; Z from these. For the first deriv-
atives, the conversion uses the fact that the Jacobian matrices for
the forward and inverse transforms are inverses:

J �

@P1
@X

@P1
@Y

@P1
@Z

@P2
@X

@P2
@Y

@P2
@Z

@P3
@X

@P3
@Y

@P3
@Z

2
6666664

3
7777775
¼

@X
@P1

@X
@P2

@X
@P3

@Y
@P1

@Y
@P2

@Y
@P3

@Z
@P1

@Z
@P2

@Z
@P3

2
6666664

3
7777775

�1

The second derivatives are computed using ðPi ¼ P1; P2; P3Þ:

PiH ¼ �JT @Pi
@X

XH þ
@Pi
@Y

YH þ
@Pi
@Z

ZH

� �
J

where the subscript H denotes a Hessian matrix. (This formula can
be derived directly from the chain rule.) It should be noted that it is
essential that all first derivatives of X; Y; Z with respect to
P1; P2; P3 be continuous.

What sorts of regions can be parameterized, with constant
limits on the parameters? We have listed a few simple regions,
such as spheres and cylinders and tori, which have simple

http://mumps.enseeiht.fr

G. Sewell / Advances in Engineering Software 41 (2010) 748–753 751
parameterizations, but the class of 3D regions that can be handled
is much larger than this list might suggest. For example, any region
of the form:

A 6 X 6 B

CðXÞ 6 Y 6 DðXÞ ð2Þ
EðX;YÞ 6 Z 6 FðX; YÞ

where C; D; E and F are arbitrary smooth functions, can be easily
parameterized as follows:

X ¼ Aþ P1ðB� AÞ
Y ¼ CðXÞ þ P2ðDðXÞ � CðXÞÞ
Z ¼ EðX; YÞ þ P3ðFðX;YÞ � EðX;YÞÞ

with limits of (0,1) on P1; P2 and P3. Replace X; Y; Z in (2) by, for
example, the spherical coordinates q; /; h and you have another
set of regions in which PDE2D can solve problems.

However, there are also many 3D regions which PDE2D cannot
handle. Since a rectangle in P1; P2; P3 has six smooth faces, any
smooth transformation of this rectangle into a region in Cartesian
coordinates will also have six or fewer (as few as one, in the case of
a sphere) smooth boundary pieces. Thus any 3D region with more
than six smooth boundary pieces (or 2D region with more than
four) cannot be handled by the PDE2D algorithm. However, the last
example in Section 4 shows that sometimes such regions can still
be handled approximately.

Implementing the coordinate transformation did not involve
any internal modifications to the PDE2D library routines, only to
the function subprograms where the PDE coefficients and bound-
ary condition coefficients are defined by the user. These functions
are called by PDE2D with various values of P1; P2; P3; U;
U1; U2; U3; U11; . . .; all that is required is to insert code to compute
X; Y; Z; Ux; Uy; Uz; Uxx; . . . for given P1; P2; P3; U1; U2; U3; U11; . . .,
using the chain rule. Then the user can simply define the PDE
and boundary condition coefficients in terms of X; Y ; Z; U; Ux;

Uy; Uz; Uxx; . . ., though the non-Cartesian variables and derivatives
can still be used as well, if desired.
4. Examples

In the first example, an elasticity problem was solved in a region
that is half a torus, of major radius R0 ¼ 5 and minor radius R1 ¼ 4,
with a smaller torus, of minor radius 0:5R1, removed (see Fig. 2).

The partial differential equations for the elastic body are
−5
0

5

0
2

4
6

8

−4

−2

0

2

4

XY

Z

Fig. 2. Part of a torus.
AUxx þ BVyx þ BWzx þ CðUyy þ VxyÞ þ CðUzz þWxzÞ ¼ 0;
CðUyx þ VxxÞ þ AVyy þ BUxy þ BWzy þ CðVzz þWyzÞ ¼ 0;
CðUzx þWxxÞ þ CðVzy þWyyÞ þ AWzz þ BUxz þ BVyz ¼ 0;
where ðU; V ; WÞ is the displacement vector, A ¼ 2:963; B ¼ 1:460,
and C ¼ 0:752 are constants (involving the elastic modulus and
Poisson ratio).

There are periodic boundary conditions on P2, and at P3 ¼ 0:5R1

the displacements are set to zero. On the outer surface of the torus,
P3 ¼ R1, there is a unit inward boundary force; that is, the bound-
ary force vector is �ðNx;Ny;NzÞ, where ðNx;Ny;NzÞ is the unit out-
ward normal to the boundary, in Cartesian coordinates. This means
the boundary conditions are:
ðAUx þ BVy þ BWzÞNxþ CðUy þ VxÞNyþ CðUz þWxÞNz ¼ �Nx

CðUy þ VxÞNxþ ðAVy þ BUx þ BWzÞNyþ CðVz þWyÞNz ¼ �Ny

CðUz þWxÞNxþ CðVz þWyÞNyþ ðAWz þ BUx þ BVyÞNz ¼ �Nz

On one flat end ðP1 ¼ 0Þ, there are zero displacements, and on
the other ðP1 ¼ pÞ, there are zero boundary forces.

Once the coordinate transformation is defined (1), the user does
not need to convert the PDEs or boundary conditions into the new
coordinate system—saving tremendous human effort. The PDEs
and boundary conditions are input exactly as shown above (see
Fig. 3), in a GUI session. Volume integrals and boundary integrals
can also be written using Cartesian coordinates. The unit outward
normal vector in Cartesian coordinates is available to the boundary
condition functions and boundary integrals. In short, while PDE2D
internally solves the problem in the new P1; P2; P3 coordinate
system, the user can supply everything in Cartesian coordinate
form.

Cross-sectional contour plots of scalar variables, and cross-sec-
tional vector field plots, can be made that reflect the true geometry
of the cross-section. For example, Fig. 4 shows the displacement
field ðU;V ;WÞ at a cross-section midway between the two flat
ends, P1 ¼ p

2, which is plotted using axes P3 � cosðP2Þ vs.
P3 � sinðP2Þ, rather than P2 vs. P3, so that the cross-section looks
like an annulus, as it should, rather than a rectangle. If the MATLAB

�

m-file generated automatically by PDE2D is run, it produces 3D
cross-sectional plots, with values coded by color, which give an
even better picture of the 3D solution. Fig. 5 shows plots of the ver-
tical displacement W at two P3 ¼ constant cross-sections.
Fig. 3. PDEs defined in GUI session.

Fig. 4. Displacement field at cross-section midway between ends.

−5
0

5

0
2

4
6

8

−4

−2

0

2

4

X

 T = 1, P3 = 3

Y

Z

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−5
0

5

0
2

4
6

8

−4

−2

0

2

4

X

 T = 1, P3 = 4

Y

Z

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 5. Vertical displacement (W) at two cross-sections.

752 G. Sewell / Advances in Engineering Software 41 (2010) 748–753
When NP1GRID ¼ NP2GRID ¼ 12; NP3GRID ¼ 8, the computed
integral of Uxþ VyþWz (total volume change) is �229.821. The
computed value of the boundary integral of U Nxþ V NyþW Nz
is �229.785; by the divergence theorem this should equal the vol-
ume change, and in fact they differ by only 0.02%.

As a second example, the first eigenvalue of the Laplacian was
computed in a cylinder with a hemispherical cap, with U ¼ 0 on
the surface. Here the transformation equations are

X ¼ RðP3ÞP2 cosðP1Þ;
Y ¼ RðP3ÞP2 sinðP1Þ;
Z ¼ P3;

where

RðP3Þ ¼ 1 when P3 6 0

RðP3Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� P32

p
when P3 > 0:

There are periodic boundary conditions at P1 ¼ 0; 2p
ðh ¼ 0;2pÞ, no boundary conditions at P3 ¼ 1ðZ ¼ 1, a single point
at the top) and P2 ¼ 0 (centerline of the cylinder), and U ¼ 0 is im-
posed at P2 ¼ 1 (lateral boundary) and at P3 ¼ �1ðZ ¼ �1, the bot-
tom boundary).

Fig. 6 shows the first eigenfunction at the cross-section P1 ¼ 0.
With NP1GRID ¼ 5; NP2GRID ¼ NP3GRID ¼ 25, a first eigenvalue
of �8.9294195 was computed, which is correct to six significant
figures (exact value = �8.9294183). Note that high accuracy is
achieved despite the discontinuity in some of the second deriva-
tives, for example, @2X

@P32. Continuity of the first derivatives is essen-
tial, however; for example, if the hemispherical cap is replaced
by a cone, the solution will not converge.

In the third example, we solve the problem Uxx þ Uyy þ Uzz ¼ 3U
in three-quarters of a rectangle, with U ¼ exþyþz on the boundary,
as shown (approximately) in Fig. 7. We could parameterize this re-
gion as follows:

x ¼ P1

y ¼ P2 cosðP3Þ
maxðj cosðP3Þj; j sinðP3ÞjÞ

z ¼ P2 sinðP3Þ
maxðj cosðP3Þj; j sinðP3ÞjÞ
Fig. 6. First eigenfunction at P1 = 0 cross-section.

0
0.2

0.4
0.6

0.8
1

−1
−0.5

0
0.5

1
−1

−0.5

0

0.5

1

XY

Z

Fig. 7. Approximation of three-quarters of rectangle.

G. Sewell / Advances in Engineering Software 41 (2010) 748–753 753
where 0 < P1 < 1; 0 < P2 < 1; 0 < P3 < 3p
2 . Unfortunately, this

parameterization is not smooth, because of the use of the ‘‘max”
function: some first derivatives are discontinuous at P3 (polar coor-
dinate h) equal to p

4 ;
3p
4 and 5p

4 . Although this is a simple region, the
boundary consists of 8 smooth parts, so it is not possible to param-
eterize it smoothly with constant limits on the parameters. How-
ever, when a is large, we can approximate the maximum function
as follows (note that the left hand side is the L1 norm of the vector
ðcosðP3Þ; sinðP3ÞÞ, while the right hand side is the La norm):

maxðj cosðP3Þj; j sinðP3ÞjÞ � ðj cosðP3Þja þ j sinðP3ÞjaÞ
1
a

When this is done, the resulting parameterization is now
smooth, and for a ¼ 20 the resulting region approximates the de-
sired region with reasonable accuracy, as seen in Fig. 7. With
NP1GRID ¼ 6; NP2GRID ¼ 10; NP3GRID ¼ 25; the volume of the
parameterized region was 2.990 (should be 3), and the average rel-
ative error in the computed solution (true solution is U ¼ exþyþz)
was 0.6%. For regions like this one, which can only be approxi-
mately handled, the accuracy obtained is naturally not as good as
would be expected with a standard Galerkin finite element
method.

5. Conclusions

PDE2D still cannot solve problems in complicated 3D regions,
with many boundary parts. For simple 3D regions, however, the
coordinate transformation described here offers significant advan-
tages over that used by other FEM software designed to handle
more general 3D regions, particularly with regard to ease of use.
Once the user has supplied the transformation equations, the rest
of the problem description is as simple as for a rectangular region.
Furthermore, this approach normally produces Oðh4Þ accuracy
even in regions with curved boundaries; without a global transfor-
mation, comparable accuracy can only be obtained if third-order
isoparametric elements are used, and the use of high-order isopara-
metric elements involves much more development effort than the
global transformation approach. Note that it is not claimed that the
collocation method described in this paper produces accuracy
superior to the traditional Galerkin finite element method, only
that comparable accuracy can be obtained with far less effort by
both the software developer and the end user, for a wide range
of interesting, simple 3D regions.

The use of P1; P2; P3 ¼ constant curves as gridlines is a further
advantage. This is often natural and desirable, for example, if the
region is a sphere and the solution is known to have a singularity
at the origin, we may use spherical coordinates and put more grid-
lines in the radial direction, and distribute them nonuniformly in
this direction.
References

[1] Amestoy P, Duff I, L’Excellent J. Multifrontal parallel distributed symmetric and
unsymmetric solvers. Comput Methods Appl Mech Eng 2000;184:501–20.

[2] Duff I. The impact of high performance computing in the solution of linear
systems: trends and problems. J Comp Appl Math 2000;123:515–30.

[3] Duff I, Reid J. The multifrontal solution of indefinite sparse symmetric linear
equations. ACM Trans Math Softw 1983;9:302–25.

[4] Gordon D, Gordon R. CGMN revisited: robust and efficient solution of stiff
linear systems derived from elliptic partial differential equations. ACM Trans
Math Softw 2008;35:18:1–18:27.

[5] Gravvanis G. OpenMP based parallel normalized direct methods for sparse
finite element linear systems. J Supercomput 2009;47(1):44–52.

[6] Gravvanis G, Lipitakis E. An explicit sparse unsymmetric finite element solver.
Commun Numer Methods Eng 1996;12:21–9.

[7] Rice J, Boisvert R. Elliptic problem solving with ELLPACK. Springer-Verlag;
1985.

[8] Saad Y, van der Vorst H. Iterative solution of linear systems in the 20th century.
J Comp Appl Math 2000;123:1–33.

[9] Sewell G. An adaptive computer program for the solution of
r � ðpðx; yÞruÞ ¼ f ðx; y;uÞ on a polygonal region. In: The mathematics of
finite elements and applications II. Academic Press; 1976. p. 543–53.

[10] Sewell G. TWODEPEP, a small general purpose finite element program.
Angewandte Informatik 1983;4:249–53.

[11] Sewell G. Analysis of a finite element method: PDE/PROTRAN. Springer-Verlag;
1985.

[12] Sewell G. PDE2D: easy-to-use software for general two-dimensional partial
differential equations. Adv Eng Softw 1993;17:105–12.

[13] Sewell G. The numerical solution of ordinary and partial differential equations.
2nd ed. John Wiley & Sons; 2005.

[14] Strang G, Fix G. An analysis of the finite element method. Prentice Hall; 1973.
[15] Topper J. Financial engineering with finite elements. John Wiley & Sons; 2005.

	Solving PDEs in non-rectangular 3D regions using a collocation finite element method
	Solving 2D problems with PDE2D
	Solving 3D problems
	Nonrectangular 3D regions
	Examples
	Conclusions
	References

