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Solving the KPIl Wave Equation with
a Moving Adaptive FEM Grid

Granville Sewell *

Abstract

The Kadomtsev-Petviashvili I (KPI) equation is the difficult nonlinear wave equa-
tion Uy + 6U2 + 6UUz + Uppar = 3Uyy. We solve this equation using PDE2D
(www.pde2d.com) with initial conditions consisting of two lump solitons, which
collide and reseparate. Since the solution has steep, moving, peaks, an adaptive
finite element grid is used with a grading which moves with the peaks.

1 Introduction

The Kadomtsev-Petviashvili I (KPI) wave equation:
Usy + 6U2 + 60U,y + Uy = 3U,,

is used to model waves in thin films with high surface tension. It has been
extensively studied in the mathematical community since the 1970 paper by
Boris Kadomtsev and Vladimir Petviashvili [1]. [2] and [3]| report that only
two kinds of numerical methods have been used to solve the KPI equation: fi-
nite difference methods (which these two papers apply) and a pseudo-spectral
method developed by [4].

All previous successful attempts to solve this difficult wave equation re-
quired development of numerical methods especially tailored for the equation,
here we attempt to solve it using a robust, general-purpose finite element pro-
gram developed by the author.
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2 The Finite Element Method Used

PDE2D ([5],[6],|7]) is a general-purpose partial differential equation solver
which solves very general systems of nonlinear, steady-state, time-dependent
and eigenvalue PDEs in 1D intervals, general 2D regions (with curved bound-
aries), and a wide range of simple 3D regions, with general boundary condi-
tions. It uses a collocation finite element method, with cubic elements, for
3D problems, and either a collocation or Galerkin finite element method can
be used for 1D and 2D problems. If the Galerkin algorithm is used for 2D
problems, as in this paper, triangular elements of up to 4th degree can be
used, on a triangulation which is automatically refined and graded, either
adaptively or according to user specifications.

To use PDE2D, we have to reduce this fourth order equation to a system
of three first or second order equations, by introducing the variables V' =
Up, W = Upy:

0 = U -V
0 = Up—W
Vi = W, +3U,, —6V?—6UW

[3] give a two-lump soliton analytical solution of the KPI equation, ex-
pressed as Q(x,y,t) = 2[®d,, — P2]/P?, where ®(z,y,t) is defined as the
determinant of a certain 4 by 4 matrix. We will use this analytical solution
for defining initial conditions, and for computing errors.

Initial conditions for the problems solved in this paper are

Ulz,y,0) = Q(z,y,0)
V(.T,y,()) Qx(x?yao)
W(z,y,0) = Qu(x,y,0)

Two of the problems solved in [3] will be solved here:

1. An “oblique collision" problem, where two solitons of equal size collide
at a 90° angle and pass through each other.
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2. A “direct collision" problem, where two solitons are initially located
along the x-axis, moving to the right with different velocities. The
larger soliton overtakes the smaller one, they combine and reseparate.

[2] solve a very similar direct collision problem.

In both cases, as long as the two solitons are sufficiently separated initially,

the initial conditions can be represented approximately by

N N.
L gl

0) ~ 16— —

where, for the oblique collision case:
Nj = —4(z — x5 — 2k;(y — y;))? + 16k (y — y;)* + 1/k;

Dj =4z —x; — 2k;(y — y;))* + 163 (y — y;)* + 1/k3

with (xbyl) = (157 _15)7 (I27y2) = (157 15)7 kl - %7 k2 ==l

and for the direct collision case:
N; = —4(z — x;)* + 16k7(y — y;)* + 1/k
Dj =4(x — z;)? + 16k (y — y;)* + 1/k3

with (21,91) = (15,0), (22, y2) = (31,0), k1 = Y0, ky =

IS

NA
In each case, 1653
J

2 has a peak of 161@2- at (z;,y;), and since this term dies

out at a distance, u(z,y,0) will have peaks close to (x1,y;) and (x9,¥s), as
seen in Figures la and 5a. In the oblique case, the solitons have velocities

(6,6) and (6, —6); in the direct case, (4.5,0) and (1.125,0).

The boundary conditions are chosen to reflect the fact that Q(z,y,t) goes

to zero far from the soliton peaks:
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As seen in Figures 1-9, the solutions have steep, moving peaks, so a major
challenge is constructing an appropriately graded, moving grid. PDE2D does
not actually allow the triangular grid to change with time. However, an
adaptive, moving grid is improvised as follows: PDE2D is called multiple
times, each time it solves the system from ¢ = ¢, | to t = t,,, taking several
time steps, using the Crank-Nicolson method to discretize time, on a fixed
grid, and the solution at ¢, is dumped on a uniform (1000 by 1000) mesh.
The next time PDE2D is called, it generates a new triangulation (of 4800
cubic triangular elements, with about 65,000 unknowns) adaptively, based
on the final solution at t,, with initial conditions linearly interpolated from
the dumped solution at t,. This process is done quite automatically, the
call to PDE2D is simply placed inside a DO loop, with initial time ¢,
and final time ¢,, each call, and the dump/restart and adaptive triangulation
options are turned on. Since an implicit method is used in time, a large
nonsymmetric, sparse linear system must be solved each time step; this is
done using a sparse direct solver based on the Harwell Library minimal degree
routine MA37 [8].

3 Numerical Results

Results are shown in Figures 1-3, for the oblique collision case, where a time
step of At = 0.0125 is used, and the grid is updated adaptively every 10
steps. The moving grid follows the peaks very nicely, and the final solution,
at t = 5, agrees reasonably well with the analytic solution (Figures 3a,4)
at that time. In all problems, it is known that both the integral of U (I1)
and the integral of U? (I2) should be constant with time. This gives us an
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easy way to estimate the numerical error. At ¢ = 5, the error in I1 was
97%, and the error in 12 was 9.4%. The I1 integral is much more sensitive
than the 12 integral to the smaller values near the boundary, far from the
peaks, so the problem was resolved with U, V, W set to the true solution on
the entire boundary, and the error in I1 decreased to 3.3%, while the error
in I2 increased slightly, to 10.0%. Since U is not always positive, it may
be more reasonable to divide by the integral of |U|, rather than the integral
of U, in calculating the I1 relative error; when this is done, we get a more
respectable-looking figure of 0.7% for the I1 error. Lu, Tian and Grimshaw
report errors in I1 and I2 of order 0.1% and 1%, respectively, with a time
step of At = 0.0001. Although our time step is 125 times larger, we have to
solve a large linear system every time step, while they used an explicit time
integration. They used a 600 by 600 uniform finite difference grid in space,
which means their problem has 360,000 unknowns.

For the direct collision case, results are shown in Figures 5-8. Again the
moving grid follows the peaks nicely, and the PDE2D solution agrees well
with the analytic solution until about ¢ = 5.0, when the taller, faster, peak
catches the smaller one (Figures 6a,9a). After that, the peaks computed
by PDE2D separate more slowly than they should: the PDE2D solution
at ¢ = 10 looks much like the true solution at ¢ = 8 (Figures 8a,9b)! [3]
report similar results on this problem, but they attribute the slow evolution
in time of their finite difference solution to the fact that they are using the
approximate initial condition 1 rather than Q(z,y,0) at t = 0. But we are
using Q(x,y,0) as our initial condition, so our slower evolution cannot be
explained similarly. In fact, when we used the approximate initial condition
1, our solution developed even more slowly.

For the direct collision problem, a time step of At = 0.025 was used, and
again the grid was updated adaptively every 10 steps. The 12 integral differs
from the true value at ¢ = 10 by about 5.9%. Lu, Tian and Grimshaw report
an error in 12 of only 0.45% at t = 10 for this problem, using a time step of
At = 0.0001.

Finally, we re-solved both problems with the same number of elements and
same time step sizes, but this time using a constant, uniform triangulation.
The resulting solutions, shown in Figures 10a-b, are very bad, and clearly
illustrate the importance of the moving, adaptive grid. The error in the
integral of U? for the oblique collision problem at t = 2.5 is now 500%,
and 4000% at t = 5 for the direct collision problem! Notice that the direct
collision solution is not only quite noisy, but the peaks are very far from
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Fig. 1. Oblique collision, ¢t = 0
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Fig. 2: Oblique collision, ¢t = 2.5
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Fig. 3: Oblique collision, ¢t = 5.0
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Fig. 4: Oblique collision exact solution, t = 5.0
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Fig. 5: Direct collision, t = 0
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Fig. 6: Direct collision, ¢ = 5.0
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Fig. 7: Direct collision, ¢ = 8.0
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Fig. 9: Direct collision exact solution, t = 5.0 and ¢t = 8.0
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Fig. 10: Results with uniform grid
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where they should be (compare Figures 9a and 10b). The fact that a uniform
triangulation of 4800 cubic elements produces such a poor solution illustrates
how difficult this nonlinear problem is.

4 Conclusions

Although our PDE2D results appear to be substantially less accurate than
those in Lu, Tian and Grimshaw, to judge by the errors in the integrals
of U and U?, they, and to our knowledge every other successful attempt
to solve this notoriously difficult PDE, used a numerical method carefully
tailored to the KPI equation. We have shown that it is possible to get
reasonable accuracy using a general-purpose finite element program, provided
an adaptive, moving grid is used which follows the peaks.
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