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Solving the KPI Wave Equation witha Moving Adaptive FEM GridGranville Sewell ∗Abstra
tThe Kadomtsev-Petviashvili I (KPI) equation is the di�
ult nonlinear wave equa-tion Uxt + 6U2

x + 6UUxx + Uxxxx = 3Uyy . We solve this equation using PDE2D(www.pde2d.
om) with initial 
onditions 
onsisting of two lump solitons, whi
h
ollide and reseparate. Sin
e the solution has steep, moving, peaks, an adaptive�nite element grid is used with a grading whi
h moves with the peaks.1 Introdu
tionThe Kadomtsev-Petviashvili I (KPI) wave equation:
Uxt + 6U2

x + 6UUxx + Uxxxx = 3Uyyis used to model waves in thin �lms with high surfa
e tension. It has beenextensively studied in the mathemati
al 
ommunity sin
e the 1970 paper byBoris Kadomtsev and Vladimir Petviashvili [1℄. [2℄ and [3℄ report that onlytwo kinds of numeri
al methods have been used to solve the KPI equation: �-nite di�eren
e methods (whi
h these two papers apply) and a pseudo-spe
tralmethod developed by [4℄.All previous su

essful attempts to solve this di�
ult wave equation re-quired development of numeri
al methods espe
ially tailored for the equation,here we attempt to solve it using a robust, general-purpose �nite element pro-gram developed by the author.
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Solving the KPI Wave Equation with a Moving Adaptive FEM Grid 522 The Finite Element Method UsedPDE2D ([5℄,[6℄,[7℄) is a general-purpose partial di�erential equation solverwhi
h solves very general systems of nonlinear, steady-state, time-dependentand eigenvalue PDEs in 1D intervals, general 2D regions (with 
urved bound-aries), and a wide range of simple 3D regions, with general boundary 
ondi-tions. It uses a 
ollo
ation �nite element method, with 
ubi
 elements, for3D problems, and either a 
ollo
ation or Galerkin �nite element method 
anbe used for 1D and 2D problems. If the Galerkin algorithm is used for 2Dproblems, as in this paper, triangular elements of up to 4th degree 
an beused, on a triangulation whi
h is automati
ally re�ned and graded, eitheradaptively or a

ording to user spe
i�
ations.To use PDE2D, we have to redu
e this fourth order equation to a systemof three �rst or se
ond order equations, by introdu
ing the variables V ≡
Ux,W ≡ Uxx:

0 = Ux − V

0 = Uxx −W

Vt = −Wxx + 3Uyy − 6V 2 − 6UW[3℄ give a two-lump soliton analyti
al solution of the KPI equation, ex-pressed as Q(x, y, t) = 2[ΦΦxx − Φ2
x]/Φ

2, where Φ(x, y, t) is de�ned as thedeterminant of a 
ertain 4 by 4 matrix. We will use this analyti
al solutionfor de�ning initial 
onditions, and for 
omputing errors.Initial 
onditions for the problems solved in this paper are
U(x, y, 0) = Q(x, y, 0)

V (x, y, 0) = Qx(x, y, 0)

W (x, y, 0) = Qxx(x, y, 0)Two of the problems solved in [3℄ will be solved here:1. An �oblique 
ollision" problem, where two solitons of equal size 
ollideat a 90o angle and pass through ea
h other.



53 Sewell2. A �dire
t 
ollision" problem, where two solitons are initially lo
atedalong the x-axis, moving to the right with di�erent velo
ities. Thelarger soliton overtakes the smaller one, they 
ombine and reseparate.[2℄ solve a very similar dire
t 
ollision problem.In both 
ases, as long as the two solitons are su�
iently separated initially,the initial 
onditions 
an be represented approximately by
Q(x, y, 0) ≈ 16

N1

D2
1

+ 16
N2

D2
2

(1)where, for the oblique 
ollision 
ase:
Nj = −4(x− xj − 2kj(y − yj))

2 + 16k2
j (y − yj)

2 + 1/k2
j

Dj = 4(x− xj − 2kj(y − yj))
2 + 16k2

j (y − yj)
2 + 1/k2

jwith (x1, y1) = (15,−15), (x2, y2) = (15, 15), k1 =
1
2
, k2 =

−1
2and for the dire
t 
ollision 
ase:

Nj = −4(x− xj)
2 + 16k2

j (y − yj)
2 + 1/k2

j

Dj = 4(x− xj)
2 + 16k2

j (y − yj)
2 + 1/k2

jwith (x1, y1) = (15, 0), (x2, y2) = (31, 0), k1 =
√
6
4
, k2 =

√
6
8In ea
h 
ase, 16Nj

D2
j

has a peak of 16k2
j at (xj , yj), and sin
e this term diesout at a distan
e, u(x, y, 0) will have peaks 
lose to (x1, y1) and (x2, y2), asseen in Figures 1a and 5a. In the oblique 
ase, the solitons have velo
ities

(6, 6) and (6,−6); in the dire
t 
ase, (4.5, 0) and (1.125, 0).The boundary 
onditions are 
hosen to re�e
t the fa
t that Q(x, y, t) goesto zero far from the soliton peaks:
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U(0, y, t) = 0

V (0, y, t) = 0

W (0, y, t) = 0

Ux(70, y, t) = 0

Wx(70, y, t) = 0

Uy(x,−30, t) = 0

Uy(x, 30, t) = 0As seen in Figures 1-9, the solutions have steep, moving peaks, so a major
hallenge is 
onstru
ting an appropriately graded, moving grid. PDE2D doesnot a
tually allow the triangular grid to 
hange with time. However, anadaptive, moving grid is improvised as follows: PDE2D is 
alled multipletimes, ea
h time it solves the system from t = tn−1 to t = tn, taking severaltime steps, using the Crank-Ni
olson method to dis
retize time, on a �xedgrid, and the solution at tn is dumped on a uniform (1000 by 1000) mesh.The next time PDE2D is 
alled, it generates a new triangulation (of 4800
ubi
 triangular elements, with about 65,000 unknowns) adaptively, basedon the �nal solution at tn, with initial 
onditions linearly interpolated fromthe dumped solution at tn. This pro
ess is done quite automati
ally, the
all to PDE2D is simply pla
ed inside a DO loop, with initial time tn−1and �nal time tn ea
h 
all, and the dump/restart and adaptive triangulationoptions are turned on. Sin
e an impli
it method is used in time, a largenonsymmetri
, sparse linear system must be solved ea
h time step; this isdone using a sparse dire
t solver based on the Harwell Library minimal degreeroutine MA37 [8℄.3 Numeri
al ResultsResults are shown in Figures 1-3, for the oblique 
ollision 
ase, where a timestep of ∆t = 0.0125 is used, and the grid is updated adaptively every 10steps. The moving grid follows the peaks very ni
ely, and the �nal solution,at t = 5, agrees reasonably well with the analyti
 solution (Figures 3a,4)at that time. In all problems, it is known that both the integral of U (I1)and the integral of U2 (I2) should be 
onstant with time. This gives us an



55 Sewelleasy way to estimate the numeri
al error. At t = 5, the error in I1 was97%, and the error in I2 was 9.4%. The I1 integral is mu
h more sensitivethan the I2 integral to the smaller values near the boundary, far from thepeaks, so the problem was resolved with U, V,W set to the true solution onthe entire boundary, and the error in I1 de
reased to 3.3%, while the errorin I2 in
reased slightly, to 10.0%. Sin
e U is not always positive, it maybe more reasonable to divide by the integral of |U |, rather than the integralof U , in 
al
ulating the I1 relative error; when this is done, we get a morerespe
table-looking �gure of 0.7% for the I1 error. Lu, Tian and Grimshawreport errors in I1 and I2 of order 0.1% and 1%, respe
tively, with a timestep of ∆t = 0.0001. Although our time step is 125 times larger, we have tosolve a large linear system every time step, while they used an expli
it timeintegration. They used a 600 by 600 uniform �nite di�eren
e grid in spa
e,whi
h means their problem has 360,000 unknowns.For the dire
t 
ollision 
ase, results are shown in Figures 5-8. Again themoving grid follows the peaks ni
ely, and the PDE2D solution agrees wellwith the analyti
 solution until about t = 5.0, when the taller, faster, peak
at
hes the smaller one (Figures 6a,9a). After that, the peaks 
omputedby PDE2D separate more slowly than they should: the PDE2D solutionat t = 10 looks mu
h like the true solution at t = 8 (Figures 8a,9b)! [3℄report similar results on this problem, but they attribute the slow evolutionin time of their �nite di�eren
e solution to the fa
t that they are using theapproximate initial 
ondition 1 rather than Q(x, y, 0) at t = 0. But we areusing Q(x, y, 0) as our initial 
ondition, so our slower evolution 
annot beexplained similarly. In fa
t, when we used the approximate initial 
ondition1, our solution developed even more slowly.For the dire
t 
ollision problem, a time step of ∆t = 0.025 was used, andagain the grid was updated adaptively every 10 steps. The I2 integral di�ersfrom the true value at t = 10 by about 5.9%. Lu, Tian and Grimshaw reportan error in I2 of only 0.45% at t = 10 for this problem, using a time step of
∆t = 0.0001.Finally, we re-solved both problems with the same number of elements andsame time step sizes, but this time using a 
onstant, uniform triangulation.The resulting solutions, shown in Figures 10a-b, are very bad, and 
learlyillustrate the importan
e of the moving, adaptive grid. The error in theintegral of U2 for the oblique 
ollision problem at t = 2.5 is now 500%,and 4000% at t = 5 for the dire
t 
ollision problem! Noti
e that the dire
t
ollision solution is not only quite noisy, but the peaks are very far from
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(a) U(x,y,0)

(b) TriangulationFig. 1: Oblique 
ollision, t = 0



57 Sewell

(a) U(x,y,2.5)

(b) TriangulationFig. 2: Oblique 
ollision, t = 2.5
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(a) U(x,y,5.0)

(b) TriangulationFig. 3: Oblique 
ollision, t = 5.0
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Fig. 4: Oblique 
ollision exa
t solution, t = 5.0
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(a) U(x,y,0)

(b) TriangulationFig. 5: Dire
t 
ollision, t = 0
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(a) U(x,y,5.0)

(b) TriangulationFig. 6: Dire
t 
ollision, t = 5.0
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(a) U(x,y,8.0)

(b) TriangulationFig. 7: Dire
t 
ollision, t = 8.0
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(a) U(x,y,10.0)

(b) TriangulationFig. 8: Dire
t 
ollision, t = 10.0
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(a) Q(x,y,5.0)

(b) Q(x,y,8.0)Fig. 9: Dire
t 
ollision exa
t solution, t = 5.0 and t = 8.0
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(a) Oblique 
ollision, t = 2.5

(b) Dire
t 
ollision, t = 5.0Fig. 10: Results with uniform grid
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ompare Figures 9a and 10b). The fa
t that a uniformtriangulation of 4800 
ubi
 elements produ
es su
h a poor solution illustrateshow di�
ult this nonlinear problem is.4 Con
lusionsAlthough our PDE2D results appear to be substantially less a

urate thanthose in Lu, Tian and Grimshaw, to judge by the errors in the integralsof U and U2, they, and to our knowledge every other su

essful attemptto solve this notoriously di�
ult PDE, used a numeri
al method 
arefullytailored to the KPI equation. We have shown that it is possible to getreasonable a

ura
y using a general-purpose �nite element program, providedan adaptive, moving grid is used whi
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