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Solving the KPI Wave Equation witha Moving Adaptive FEM GridGranville Sewell ∗AbstratThe Kadomtsev-Petviashvili I (KPI) equation is the di�ult nonlinear wave equa-tion Uxt + 6U2

x + 6UUxx + Uxxxx = 3Uyy . We solve this equation using PDE2D(www.pde2d.om) with initial onditions onsisting of two lump solitons, whihollide and reseparate. Sine the solution has steep, moving, peaks, an adaptive�nite element grid is used with a grading whih moves with the peaks.1 IntrodutionThe Kadomtsev-Petviashvili I (KPI) wave equation:
Uxt + 6U2

x + 6UUxx + Uxxxx = 3Uyyis used to model waves in thin �lms with high surfae tension. It has beenextensively studied in the mathematial ommunity sine the 1970 paper byBoris Kadomtsev and Vladimir Petviashvili [1℄. [2℄ and [3℄ report that onlytwo kinds of numerial methods have been used to solve the KPI equation: �-nite di�erene methods (whih these two papers apply) and a pseudo-spetralmethod developed by [4℄.All previous suessful attempts to solve this di�ult wave equation re-quired development of numerial methods espeially tailored for the equation,here we attempt to solve it using a robust, general-purpose �nite element pro-gram developed by the author.
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Solving the KPI Wave Equation with a Moving Adaptive FEM Grid 522 The Finite Element Method UsedPDE2D ([5℄,[6℄,[7℄) is a general-purpose partial di�erential equation solverwhih solves very general systems of nonlinear, steady-state, time-dependentand eigenvalue PDEs in 1D intervals, general 2D regions (with urved bound-aries), and a wide range of simple 3D regions, with general boundary ondi-tions. It uses a olloation �nite element method, with ubi elements, for3D problems, and either a olloation or Galerkin �nite element method anbe used for 1D and 2D problems. If the Galerkin algorithm is used for 2Dproblems, as in this paper, triangular elements of up to 4th degree an beused, on a triangulation whih is automatially re�ned and graded, eitheradaptively or aording to user spei�ations.To use PDE2D, we have to redue this fourth order equation to a systemof three �rst or seond order equations, by introduing the variables V ≡
Ux,W ≡ Uxx:

0 = Ux − V

0 = Uxx −W

Vt = −Wxx + 3Uyy − 6V 2 − 6UW[3℄ give a two-lump soliton analytial solution of the KPI equation, ex-pressed as Q(x, y, t) = 2[ΦΦxx − Φ2
x]/Φ

2, where Φ(x, y, t) is de�ned as thedeterminant of a ertain 4 by 4 matrix. We will use this analytial solutionfor de�ning initial onditions, and for omputing errors.Initial onditions for the problems solved in this paper are
U(x, y, 0) = Q(x, y, 0)

V (x, y, 0) = Qx(x, y, 0)

W (x, y, 0) = Qxx(x, y, 0)Two of the problems solved in [3℄ will be solved here:1. An �oblique ollision" problem, where two solitons of equal size ollideat a 90o angle and pass through eah other.



53 Sewell2. A �diret ollision" problem, where two solitons are initially loatedalong the x-axis, moving to the right with di�erent veloities. Thelarger soliton overtakes the smaller one, they ombine and reseparate.[2℄ solve a very similar diret ollision problem.In both ases, as long as the two solitons are su�iently separated initially,the initial onditions an be represented approximately by
Q(x, y, 0) ≈ 16
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has a peak of 16k2
j at (xj , yj), and sine this term diesout at a distane, u(x, y, 0) will have peaks lose to (x1, y1) and (x2, y2), asseen in Figures 1a and 5a. In the oblique ase, the solitons have veloities

(6, 6) and (6,−6); in the diret ase, (4.5, 0) and (1.125, 0).The boundary onditions are hosen to re�et the fat that Q(x, y, t) goesto zero far from the soliton peaks:
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U(0, y, t) = 0

V (0, y, t) = 0

W (0, y, t) = 0

Ux(70, y, t) = 0

Wx(70, y, t) = 0

Uy(x,−30, t) = 0

Uy(x, 30, t) = 0As seen in Figures 1-9, the solutions have steep, moving peaks, so a majorhallenge is onstruting an appropriately graded, moving grid. PDE2D doesnot atually allow the triangular grid to hange with time. However, anadaptive, moving grid is improvised as follows: PDE2D is alled multipletimes, eah time it solves the system from t = tn−1 to t = tn, taking severaltime steps, using the Crank-Niolson method to disretize time, on a �xedgrid, and the solution at tn is dumped on a uniform (1000 by 1000) mesh.The next time PDE2D is alled, it generates a new triangulation (of 4800ubi triangular elements, with about 65,000 unknowns) adaptively, basedon the �nal solution at tn, with initial onditions linearly interpolated fromthe dumped solution at tn. This proess is done quite automatially, theall to PDE2D is simply plaed inside a DO loop, with initial time tn−1and �nal time tn eah all, and the dump/restart and adaptive triangulationoptions are turned on. Sine an impliit method is used in time, a largenonsymmetri, sparse linear system must be solved eah time step; this isdone using a sparse diret solver based on the Harwell Library minimal degreeroutine MA37 [8℄.3 Numerial ResultsResults are shown in Figures 1-3, for the oblique ollision ase, where a timestep of ∆t = 0.0125 is used, and the grid is updated adaptively every 10steps. The moving grid follows the peaks very niely, and the �nal solution,at t = 5, agrees reasonably well with the analyti solution (Figures 3a,4)at that time. In all problems, it is known that both the integral of U (I1)and the integral of U2 (I2) should be onstant with time. This gives us an



55 Sewelleasy way to estimate the numerial error. At t = 5, the error in I1 was97%, and the error in I2 was 9.4%. The I1 integral is muh more sensitivethan the I2 integral to the smaller values near the boundary, far from thepeaks, so the problem was resolved with U, V,W set to the true solution onthe entire boundary, and the error in I1 dereased to 3.3%, while the errorin I2 inreased slightly, to 10.0%. Sine U is not always positive, it maybe more reasonable to divide by the integral of |U |, rather than the integralof U , in alulating the I1 relative error; when this is done, we get a morerespetable-looking �gure of 0.7% for the I1 error. Lu, Tian and Grimshawreport errors in I1 and I2 of order 0.1% and 1%, respetively, with a timestep of ∆t = 0.0001. Although our time step is 125 times larger, we have tosolve a large linear system every time step, while they used an expliit timeintegration. They used a 600 by 600 uniform �nite di�erene grid in spae,whih means their problem has 360,000 unknowns.For the diret ollision ase, results are shown in Figures 5-8. Again themoving grid follows the peaks niely, and the PDE2D solution agrees wellwith the analyti solution until about t = 5.0, when the taller, faster, peakathes the smaller one (Figures 6a,9a). After that, the peaks omputedby PDE2D separate more slowly than they should: the PDE2D solutionat t = 10 looks muh like the true solution at t = 8 (Figures 8a,9b)! [3℄report similar results on this problem, but they attribute the slow evolutionin time of their �nite di�erene solution to the fat that they are using theapproximate initial ondition 1 rather than Q(x, y, 0) at t = 0. But we areusing Q(x, y, 0) as our initial ondition, so our slower evolution annot beexplained similarly. In fat, when we used the approximate initial ondition1, our solution developed even more slowly.For the diret ollision problem, a time step of ∆t = 0.025 was used, andagain the grid was updated adaptively every 10 steps. The I2 integral di�ersfrom the true value at t = 10 by about 5.9%. Lu, Tian and Grimshaw reportan error in I2 of only 0.45% at t = 10 for this problem, using a time step of
∆t = 0.0001.Finally, we re-solved both problems with the same number of elements andsame time step sizes, but this time using a onstant, uniform triangulation.The resulting solutions, shown in Figures 10a-b, are very bad, and learlyillustrate the importane of the moving, adaptive grid. The error in theintegral of U2 for the oblique ollision problem at t = 2.5 is now 500%,and 4000% at t = 5 for the diret ollision problem! Notie that the diretollision solution is not only quite noisy, but the peaks are very far from
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(a) U(x,y,0)

(b) TriangulationFig. 1: Oblique ollision, t = 0
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(a) U(x,y,2.5)

(b) TriangulationFig. 2: Oblique ollision, t = 2.5
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(a) U(x,y,5.0)

(b) TriangulationFig. 3: Oblique ollision, t = 5.0
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Fig. 4: Oblique ollision exat solution, t = 5.0
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(a) U(x,y,0)

(b) TriangulationFig. 5: Diret ollision, t = 0
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(a) U(x,y,5.0)

(b) TriangulationFig. 6: Diret ollision, t = 5.0
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(a) U(x,y,8.0)

(b) TriangulationFig. 7: Diret ollision, t = 8.0
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(a) U(x,y,10.0)

(b) TriangulationFig. 8: Diret ollision, t = 10.0
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(a) Q(x,y,5.0)

(b) Q(x,y,8.0)Fig. 9: Diret ollision exat solution, t = 5.0 and t = 8.0
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(a) Oblique ollision, t = 2.5

(b) Diret ollision, t = 5.0Fig. 10: Results with uniform grid



Solving the KPI Wave Equation with a Moving Adaptive FEM Grid 66where they should be (ompare Figures 9a and 10b). The fat that a uniformtriangulation of 4800 ubi elements produes suh a poor solution illustrateshow di�ult this nonlinear problem is.4 ConlusionsAlthough our PDE2D results appear to be substantially less aurate thanthose in Lu, Tian and Grimshaw, to judge by the errors in the integralsof U and U2, they, and to our knowledge every other suessful attemptto solve this notoriously di�ult PDE, used a numerial method arefullytailored to the KPI equation. We have shown that it is possible to getreasonable auray using a general-purpose �nite element program, providedan adaptive, moving grid is used whih follows the peaks.Referenes[1℄ B. Kadomtsev and V. Petviashvili. On the stability of solitary waves inweakly dispersive media. Sov. Phys. Dok, 15:539�541, 1970.[2℄ B. Feng and T. Mitsui. A �nite di�erene method for the Korteweg-deVries and the kadomtsev-Petviashvili equations. Journal of Computa-tional and Applied Mathematis, 90:95�116, 1998.[3℄ Z. Lu, E. Tian, and R. Grimshaw. Interation of two lump solitons de-sribed by the kadomtsev-petviashvili i equation. Wave Motion, 40:123�135, 2004.[4℄ B. Fornberg and G.B. Whitham. A numerial and theoretial study ofertain nonlinear wave phenomena. Phil. Trans. Royal Soiety London,289:373�404, 1978.[5℄ G. Sewell. The Numerial Solution of Ordinary and Partial Di�erentialEquations, seond edition. John Wiley & Sons, 2005.[6℄ G. Sewell. Solving pdes in non-retangular 3d regions using a olloation�nite element method. Advanes in Engineering Software, 5:748�753,2010.
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