Dynamic Systems, Chapter 3

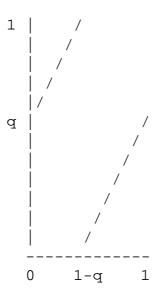
An orbit $(x_1, x_2, x_3, ...)$ is *chaotic* if:

- 1. It is bounded
- 2. It is not asymptotically periodic (or eventually periodic)
- 3. The Lyapunov number: $\lim_{n\to\infty} |f'(x_1) * f'(x_2) * \dots f'(x_n)|^{1/n}$ is greater than 1.0

Condition [3] ensures sensitivity to initial conditions, since the Lyapunov number is an "average" of the derivative, and $|f(x_1) - f(y_1)| = |f'(c)| * |x_1 - y_1|$

Examples:

1.
$$f(x) = (x+q)_{mod 1}$$
, where $0 < q = i/j < 1$ is rational.



Now there are no chaotic orbits, because all orbits are periodic, since $x_{j+1} = (x_1 + j * (i/j))_{mod 1} = x_1$.

2. $f(x) = (x+q)_{mod 1}$, where 0 < q < 1 is irrational.

Now there are no periodic orbits, but since f'(x) = 1 at all points except the single point x = 1 - q, the Lyapunov number is 1 for all orbits, so there is no sensitivity to initial conditions. If x_1 and y_1 are very close, their orbits will stay close, in fact they will neither separate nor converge.

3. $f(x) = (2x)_{mod \ 1}$.

If $x = 0.b_1b_2b_3...$ is the binary representation for x, f(x) is found by simply shifting the "decimal" point one bit to the right (multiplying by 2) and truncating any integer part (taking mod 1 of the result). If x_1 has a repeating or truncating binary representation, that is, if x_1 is rational, then the orbit $(x_1, x_2, x_3, ...)$ is eventually periodic, so this orbit is not chaotic. But if x_1 is irrational, the orbit $(x_1, x_2, x_3, ...)$ is chaotic, because it is not asymptotically periodic, and the Lyapunov number is 2, because f'(x) = 2 everywhere except x = 0, 0.5, 1.0. That means there is sensitive dependence on initial conditions: if x_1 and y_1 are very close, say, they differ beginning in the 100^{th} binary bit, their separation will approximately double each iteration, at least for the first 100 iterations.

4. T(x) = 2x when x < 1/2, and T(x) = 2(1-x) when $x \ge 1/2$.

This is the "tent map". Again we can define the map in terms of what it does to the binary representation of x: If the first bit is a 0, T simply shifts the decimal point to the right one bit (multiplies by 2). If the first bit is a 1, T switches all 0s and 1s (subtracts x from 1 = 0.1111111...), and then shifts the decimal point to the right one bit (multiplies by 2). So, like the previous map, if x_1 is irrational, the orbit is not eventually or asymptotically periodic, and its Lyapunov number is 2 because |T'(x)| = 2 everywhere except three points. Thus $(x_1, x_2, x_3, ...)$ is a chaotic orbit, if x_1 is irrational. If x_1 is rational, $(x_1, x_2, x_3, ...)$ is eventually periodic. To see this, suppose the binary representation of x_1 has a repeating block of M bits. Then, for i greater than some i_0 , either $x_{i+M} = x_i$ or $x_{i+M} = 1 - x_i$, depending on whether an even or odd number of bit reflections are done during the M iterations. In the first case, the period is M; in the second case, do another M iterations and then either $x_{i+2M} = x_{i+M}$ or $x_{i+2M} = 1 - x_{i+M} = x_i$. So

the period is 2M or less. (With a little more work, it can be shown that the period is actually M or less.)

5. f(x) = 4x(1-x)

This is the logistic map with a = 4. Now this map is conjugate to the tent map T(x), with conjugacy $C(x) = \frac{1}{2}[1 - cos(\pi x)]$, because $C(T(x)) = f(C(x)) = sin^2(\pi x)$ as can be directly verified. This means for every orbit $(x_1, x_2, x_3, ...)$ of the tent map, there is a corresponding orbit $(C(x_1), C(x_2), C(x_3), ...)$ of the logistic map, because $C(x_{n+1}) = C(T(x_n)) = f(C(x_n))$. Clearly, if $(x_1, x_2, x_3, ...)$ is bounded, not asymptotically periodic and depends sensitively on the initial point, the same is true of $(C(x_1), C(x_2), C(x_3), ...)$. Thus there are also an infinite number of chaotic orbits for the logistic map (with a = 4), one starting with $C(x_1)$ for any irrational x_1 . All orbits starting with $C(x_1)$ for x_1 rational produce periodic orbits (all repelling!); however, "most" orbits are chaotic.