Dynamic Systems, Chapter 7
Autonomous system of differential equations:
2 (t) = fi(xg, ..., z,)
2t) = fa(rs o )

orz'(t) = f(x).

Linear autonomous system:

.Z’ll = anxry+ ... +a,T, — bl
L= b
T, = Qpi%1+ ...+ QppTy — Oy

orz’ = Az —b.

Equilibrium points are points whergx) = 0, or Az — b = 0, in the linear
case. But equilibrium points, like the fixed points of digerdynamic systems,
may be stable or unstable.

Supposedz* = b, so thatz* is an equilibrium point, and supposkis "diag-
onalizable”, that isA = S~'DS, whereD is a diagonal matrix, containing the
eigenvalued;; = \; of A. Then:

¥ =Ar —b= Az — Ax* = A(x — 2*) = S7'DS(x — z*)
or
Sz' = DS(x — x*).

and definez(t) = S(z(t) — 2*), soz’ = Sz’. Thenz’ = Dz or,
Zi = )\121
2l = AnZn

and soz, = cye™t. Although we assumel andb are real, the eigenvalue
A = pr + iq;, may be complex, so:



2k = cpet = cpePrtelint = cpePrt(cos(qut) + 1 * sin(qut))

Now everyz; converges to 0, iez(t) = S(z(t) — =*) converges to 0, which
meansz(t) converges to the equilibrium point*, if the real partp, of every
eigenvalue is negative. This statement is still true evehig not diagonalizable,
but the proof is more difficult. Thus if all eigenvalues d4fhave negative real
parts, the equilibrium point* is globally stable. If any eigenvalues have positive
real parts, the equilibrium point is unstable. If there ageervalues with zero real
parts, but none with positive real parts, further analysisdeded.

An equilibrium pointz* of a nonlinear system is a point wheféz*) = 0. In
the nonlinear case, we write:

o' = f(x) = f(x) - f(a") = Df(z")(x — 27)

S0 we can, in the neighborhood of an equilibrium point, agjpnate the non-
linear system by a linear system, wittreplaced by the Jacobian ffatz*. Now
the eigenvalues of the JacobiBxf (z*) determine stability, though one cannot say
anything about global stability, only local stability.

To relate stability for discrete systems to stability fdfeliential equation sys-
tems, we can approximate the linear differential equati@tesnz’ = Ax — b =
A(x — 2*) using Euler’'s method:

B A(gn ), or

" = 2" + hA(z" — %), or

"t — =" — 2 + hA(z" — 2¥)

If we definee™ = 2™ — z*, then:

" = (I +hA)e"

and from chapter 2 we know that an equilibrium paoittwill be stable if all
eigenvalues of + hA are less than one is absolute value. If the eigenvaluels of

are)\, = px + iqyx, the eigenvalues af + h A arepy, = 1+ h(pg + ig), and

\i® = (1 + hp)? + (hqy)? = 14 2hpy, + R2(p;, + q7)



whenh is small, so that the Euler equation approximates the éiffiéal equa-
tion system, we have:

|kl? = 1+ 2hpy
which will be less than 1 whep, is negative.
Nonlinear Example

Consider the Example 7.19 on page 299 of your text:

x/ — JJ2 _ y2
y = ay—4

When we setr> — 4> = 0 andxy — 4 = 0 we find two equilibrium points,
(2,2) and(—2, —2).

The Jacobian matrix is:

20 -2y
Yy T
and the eigenvalues are the root§df — \)(z — \) + 2y* = 0, which are:

A= %(Bx + /22 — 8y?)

At the equilibrium point(2, 2), then, the eigenvalues ade= 3 + /7i, and
since the real parts of both eigenvalues are positive, thig s unstable. At the
other equilibriuim point —2, —2), the eigenvalues ark = —3 4 /74, and this
point is stable.

We use MATLAB to solve this system:
tspan = 0:0.01:5;

x0 = [1.998 1.999];
[T X] = ode45(f719’tspan,x0);



plot(X(:,1),X(:,2))

x0 = [-2.1 -1.9];

[T X] = oded45(f719',tspan,x0);
figure

plot(X(:,1),X(:,2))

function xp = f719(t,x)
Xp = zeros(2,1);

xp(1) = x(1)"2-x(2)"2;
xp(2) = x(1)  *x(2) - 4

first, starting from a point1.998, 1.999) very close to the unstable equilib-
rium point (2, 2), then, starting from a point close to the stable equilibrjpmmt
(—2,-2).
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Oscillators
Consider the differential equation:

2
miE = f(z) — ot

or, written as a system of two first order equations:

T = Tg
mxh = f(x1) — axy

where f(z) = —P'(x). This represents an oscillator of mass in a potential
energy field given byP(x) (f(z) = —P'(z) is the force field, the force acts in
the direction of decreasing potential energy), with a ioical (damping) force
proportional to the velocity, and in the direction oppogshe velocity. For an
oscillating spring f(x) = —kxz, for a pendulumyf(z) = —k * sin(z), and for the
Duffing oscillator,f (z) = = — 3.

The total energy of the oscillator is given (t) = 1m(2’)* + P(z), where
the first term is the kinetic energy, the second is the paikatiergy. Now

L — ma'y” + P'(z)2’ = 2'(ma” — f(z)) = —a(z’)?
so if a = 0 (undamped oscillator), the energy is constany if> 0 (damped
oscillator) the energy decreases until the velocity is 0.

An undamped oscillator, such as a spring or pendulum, caibiexteriodic
motion. A damped oscillator cannot, it will rather convetgean equilibrium
point, where the velocity is zero (kinetic energy is zero) #me potential energy
has at least a local minimum (eg, computer problem 8.2 fobtlféng oscillator).
However, if you add an external forcing terpit), (eg, computer problem 7.3 for
the Duffing oscillator) now fresh energy is continually puedgnto the system,
and then even a damped oscillator can exhibit periodic behd@ut the period of
the oscillator in this case must obviously be a multiple efpleriod of the external
force @ in the case of computer problem 7.3).

Computer problem 7.2 can be written as a second order equatio

JJ” - x4+ (x/)z
which can be thought of as a spring oscillator with nonlirgemping, where the
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damping coefficient = —z’ is not constant. In fact, nowis not always positive,
when the oscillator is on its way up’ > 0), the motion is accelerated, on its way
down the motion is damped, and it is not clear what one shouéat, periodic
motion is not ruled out.

The situation in computer problem 8.1 (Van der Pol equation)

" =—x+ (1 — 2?2
is similar, nowa = 2% — 1, so again sometimes there may be damping, sometimes

acceleration of the motion. In fact, there is damping whendhcillator is far
from x = 0, and acceleration when it is close(to



