
Dynamic Systems, Chapter 7

Autonomous system of differential equations:

x′

1(t) = f1(x1, ..., xn)
. = .

x′

n(t) = fn(x1, ..., xn)

or x′(t) = f(x).

Linear autonomous system:

x′

1 = a11x1 + ... + a1nxn − b1

. = .

x′

n = an1x1 + ... + annxn − bn

or x′ = Ax − b.

Equilibrium points are points wheref(x) = 0, or Ax − b = 0, in the linear
case. But equilibrium points, like the fixed points of discrete dynamic systems,
may be stable or unstable.

SupposeAx∗ = b, so thatx∗ is an equilibrium point, and supposeA is ”diag-
onalizable”, that is,A = S−1DS, whereD is a diagonal matrix, containing the
eigenvaluesdii = λi of A. Then:

x′ = Ax − b = Ax − Ax∗ = A(x − x∗) = S−1DS(x − x∗)

or

Sx′ = DS(x − x∗).

and definez(t) = S(x(t) − x∗), soz′ = Sx′. Thenz′ = Dz or,

z′1 = λ1z1

. = .

z′n = λnzn

and sozk = cke
λkt. Although we assumeA and b are real, the eigenvalue

λk = pk + iqk may be complex, so:
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zk = cke
λkt = cke

pkteiqkt = cke
pkt(cos(qkt) + i ∗ sin(qkt))

Now everyzk converges to 0, ie,z(t) = S(x(t) − x∗) converges to 0, which
meansx(t) converges to the equilibrium pointx∗, if the real partpk of every
eigenvalue is negative. This statement is still true even ifA is not diagonalizable,
but the proof is more difficult. Thus if all eigenvalues ofA have negative real
parts, the equilibrium pointx∗ is globally stable. If any eigenvalues have positive
real parts, the equilibrium point is unstable. If there are eigenvalues with zero real
parts, but none with positive real parts, further analysis is needed.

An equilibrium pointx∗ of a nonlinear system is a point wheref(x∗) = 0. In
the nonlinear case, we write:

x′ = f(x) = f(x) − f(x∗) ≈ Df(x∗)(x − x∗)

so we can, in the neighborhood of an equilibrium point, approximate the non-
linear system by a linear system, withA replaced by the Jacobian off atx∗. Now
the eigenvalues of the JacobianDf(x∗) determine stability, though one cannot say
anything about global stability, only local stability.

To relate stability for discrete systems to stability for differential equation sys-
tems, we can approximate the linear differential equation systemx′ = Ax − b =
A(x − x∗) using Euler’s method:

xn+1
−xn

h
= A(xn − x∗), or

xn+1 = xn + hA(xn − x∗), or

xn+1 − x∗ = xn − x∗ + hA(xn − x∗)

If we defineen = xn − x∗, then:

en+1 = (I + hA)en

and from chapter 2 we know that an equilibrium pointx∗ will be stable if all
eigenvalues ofI + hA are less than one is absolute value. If the eigenvalues ofA

areλk = pk + iqk, the eigenvalues ofI + hA areµk = 1 + h(pk + iqk), and

|µk|2 = (1 + hpk)
2 + (hqk)

2 = 1 + 2hpk + h2(p2
k + q2

k)
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whenh is small, so that the Euler equation approximates the differential equa-
tion system, we have:

|µk|2 ≈ 1 + 2hpk

which will be less than 1 whenpk is negative.

Nonlinear Example

Consider the Example 7.19 on page 299 of your text:

x′ = x2 − y2

y′ = xy − 4

When we setx2 − y2 = 0 andxy − 4 = 0 we find two equilibrium points,
(2, 2) and(−2,−2).

The Jacobian matrix is:

[

2x −2y
y x

]

and the eigenvalues are the roots of(2x − λ)(x − λ) + 2y2 = 0, which are:

λ = 1

2
(3x ±

√

x2 − 8y2)

At the equilibrium point(2, 2), then, the eigenvalues areλ = 3 ±
√

7i, and
since the real parts of both eigenvalues are positive, this point is unstable. At the
other equilibriuim point(−2,−2), the eigenvalues areλ = −3 ±

√
7i, and this

point is stable.

We use MATLAB to solve this system:

tspan = 0:0.01:5;
x0 = [1.998 1.999];
[T X] = ode45(’f719’,tspan,x0);
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plot(X(:,1),X(:,2))
x0 = [-2.1 -1.9];
[T X] = ode45(’f719’,tspan,x0);
figure
plot(X(:,1),X(:,2))

function xp = f719(t,x)
xp = zeros(2,1);
xp(1) = x(1)ˆ2-x(2)ˆ2;
xp(2) = x(1) * x(2) - 4;

first, starting from a point(1.998, 1.999) very close to the unstable equilib-
rium point(2, 2), then, starting from a point close to the stable equilibriumpoint
(−2,−2).

4



−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−3

−2

−1

0

1

2

3

Starting At (1.998,1.999)

5



−2.1 −2.05 −2 −1.95
−2.02

−2

−1.98

−1.96

−1.94

−1.92

−1.9

−1.88

Starting At (-2.1,-1.9)

6



Oscillators

Consider the differential equation:

md2x

dt2
= f(x) − adx

dt

or, written as a system of two first order equations:

x′

1 = x2

mx′

2 = f(x1) − ax2

wheref(x) = −P ′(x). This represents an oscillator of massm, in a potential
energy field given byP (x) (f(x) = −P ′(x) is the force field, the force acts in
the direction of decreasing potential energy), with a frictional (damping) force
proportional to the velocity, and in the direction oppositethe velocity. For an
oscillating spring,f(x) = −kx, for a pendulum,f(x) = −k ∗ sin(x), and for the
Duffing oscillator,f(x) = x − x3.

The total energy of the oscillator is given byE(t) = 1

2
m(x′)2 + P (x), where

the first term is the kinetic energy, the second is the potential energy. Now

dE

dt
= mx′x′′ + P ′(x)x′ = x′(mx′′ − f(x)) = −a(x′)2

so if a = 0 (undamped oscillator), the energy is constant, ifa > 0 (damped
oscillator) the energy decreases until the velocity is 0.

An undamped oscillator, such as a spring or pendulum, can exhibit periodic
motion. A damped oscillator cannot, it will rather convergeto an equilibrium
point, where the velocity is zero (kinetic energy is zero) and the potential energy
has at least a local minimum (eg, computer problem 8.2 for theDuffing oscillator).
However, if you add an external forcing term,g(t), (eg, computer problem 7.3 for
the Duffing oscillator) now fresh energy is continually pumped into the system,
and then even a damped oscillator can exhibit periodic behavior. But the period of
the oscillator in this case must obviously be a multiple of the period of the external
force (2π in the case of computer problem 7.3).

Computer problem 7.2 can be written as a second order equation:

x′′ = −x + (x′)2

which can be thought of as a spring oscillator with nonlineardamping, where the
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damping coefficienta = −x′ is not constant. In fact, nowa is not always positive,
when the oscillator is on its way up(x′ > 0), the motion is accelerated, on its way
down the motion is damped, and it is not clear what one should expect, periodic
motion is not ruled out.

The situation in computer problem 8.1 (Van der Pol equation):

x′′ = −x + (1 − x2)x′

is similar, nowa = x2 −1, so again sometimes there may be damping, sometimes
acceleration of the motion. In fact, there is damping when the oscillator is far
from x = 0, and acceleration when it is close to0.

8


