Cauchy-Schwartz Inequality

Proof of Cauchy-Schwartz inequality by induction.

In terms of the inner product, CS says |(A, B)| < || Al||| B||

We will assume all a; and b; are nonnegative, for the moment.
CS is trivial for n=1. Now assume the n-term CS holds, and try to prove n+1-
term CS holds.
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Using the assumption that the n-term CS inequality holds:
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Now we simply restate the n-term CS inequality:
(a3 + ..+ a2) (b + ... +02) > (ar1hy + .. + apbp)ee. (B)

and throw in an identity:

U1t = Qg by (©)

Then we add the left and right sides of inequalities A,B and C together:
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which is just CS for n+1 terms. QED

If a;,b; are not assumed to be nonnegative, then
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Now the triangle inequality follows from CS:
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which follows from the CS inequality. (So we were actually working back-
wards, but all steps are reversible.)



