Notes on Chapter 2

- 1. Row rank is dimension of space spanned by rows, column rank is dimension of space spanned by columns of M by N matrix A.
- 2. Elementary row operations do not change row rank or column rank of a matrix (Corollary 2.3.1 (5)).
- Row rank and column rank of matrix in RREF are both equal to number of nonzero rows, eg, the following matrix has row and column rank = 3. Thus row rank = column rank = "rank" of original matrix. Note that rank of matrix, k, satisfies k ≤ min(M, N).

[1]	4	0	0	-3
0	0	1	0	4
0	0	0	1	3
0	0	0	0	0

- 4. Dimension of range of A = rank(A) = k. Obvious for matrix (EA) in RREF, because EAx=Eb has solutions when $Eb = (c_1, ..., c_k, 0, ...0)$, where $c_1, ..., c_k$ are arbitrary. Since Ax=b if and only if EAx=Eb, dimension of range of A is same as dimension of range of EA.
- 5. Dimension of null space of A = N-k. Obvious once matrix is in RREF, because you can solve EAx=0 for k "pivot" variables in terms of N-k "non-pivot" variables, which may have arbitrary values. Since Ax=0 if and only if EAx=0, null space of A is same as null space of EA.
- 6. If M < N (fewer equations than unknowns), null space must have positive dimension, because $k \le min(M, N) = M < N$, so N k > 0. Thus if Ax=b has a solution it cannot be unique.
- 7. If M > N (more equations than unknowns), range of A cannot be all of R^M , because $k \le min(M, N) = N < M$. Thus Ax=b will "usually" have no solution.
- 8. If M=N (same number of equations as unknowns, usually the case in applications) either:

- a. k=N (A is "nonsingular"), so range is all of R^N , and N-k=0 so null space consists of only the zero vector. Thus Ax=b has a solution for all b, and it is unique, because if Ay=b also, A(y-x)=0, and thus y-x=0, or y=x.
- b. k < N (A is "singular") so range is not all of R^N and null space has positive dimension. Thus Ax=b usually has no solution, and if it does, it cannot be unique.

9. To summarize:

	Ax=b has solutions for all b	solutions unique if exist
	$(\dim(range) = M)$	$(\dim(\text{null space}) = 0)$
	(map is "onto" R^M)	(map is "1-to-1")
M < N	maybe	no
M = N, A singular	no	no
M = N, A nonsingular	yes	yes
M > N	no	maybe

10. Now we can prove that all bases in \mathbb{R}^M must have exactly M vectors (cf. Theorem 1.5.1). If $(v_1, v_2, ..., v_N)$ form a basis, every vector v in \mathbb{R}^M has a unique expansion $v = \alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_N v_N$. This means $A\alpha = v$ has a unique solution for any v in \mathbb{R}^M , where A is an M by N matrix whose columns are $v_1, v_2, ..., v_N$. But we have just shown above that this can happen only if M=N.