Notes on Chapter 3

1. The eigenvalues λ_i of an N by N matrix A are the (possibly complex) roots of the characteristic polynomial det $(\lambda I - A)$. This N^{th} degree polynomial can be factored as

$$(\lambda - \lambda_1)^{m_1} (\lambda - \lambda_2)^{m_2} ... (\lambda - \lambda_k)^{m_k}$$

- 2. m_i is called the algebraic multiplicity of the eigenvalue λ_i . The sum of the algebraic multiplicities is always N.
- 3. For each eigenvalue λ_i the set of solutions to $(\lambda_i I A)z = 0$ (the set of eigenvectors corresponding to λ_i) is a subspace of R^N , called the eigenspace for that eigenvalue. The dimension of the eigenspace corresponding to λ_i is called the geometric multiplicity, n_i , of this eigenvalue.
- Now let's choose a basis for the eigenspace of λ₁, and place these n₁ vectors in the first n₁ columns of a matrix S (n_i is the geometric multiplicity of λ_i). Choose the remaining columns of this N by N matrix so that they form a basis for R^N (recall the extension to a basis theorem). Then AS = SE, where E has the form:

λ_1	0		0	x	 x
0	λ_1		0	x	 x
		•••			
0	0		λ_1	x	 x
0	0		0	x	 x
0	0		0	x	 x
0	0		0	x	 x

5. Since S has an inverse, A = SES⁻¹ (A is "similar" to E), so det(λI − A) = det (λSS⁻¹ − SES⁻¹) = det (S(λI − E)S⁻¹) = det(S)det(λI − E)det(S⁻¹) = det(SS⁻¹)det(λI − E) = det(λI − E) so A and E have exactly the same characteristic polynomial, and the characteristic polynomial for E contains the factor (λ − λ₁)^{n₁}. Thus the algebraic multiplicity m₁ is as least as large as the geometric multiplicity n₁. The same is clearly true for all eigenvalues, so in general we see that 1 ≤ n_i ≤ m_i. If n_i < m_i, the eigenvalue λ_i is said to be "defective" (it's missing some of its eigenvalues).

6. Any set of eigenvectors z_i corresponding to distinct eigenvalues λ_i are independent. To show this, assume Σ^k_{i=1} α_iz_i = 0. Then by multiplying both sides of this equation by A^j we get: Σ^k_{i=1} α_iA^jz_i = Σ^k_{i=1} α_iλ^j_iz_i = 0 If we take j=0,...,k-1, we get k equations for the k unknowns α_iz_i, i =

If we take j=0,...,k-1, we get k equations for the k unknowns $\alpha_i z_i, i = 1, ..., k$:

$$\begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ \lambda_1 & \lambda_2 & \lambda_3 & \dots & \lambda_k \\ \lambda_1^2 & \lambda_2^2 & \lambda_3^2 & \dots & \lambda_k^2 \\ \lambda_1^3 & \lambda_2^3 & \lambda_3^3 & \dots & \lambda_k^3 \\ \dots & \dots & \dots & \dots & \dots \\ \lambda_1^{k-1} & \lambda_2^{k-1} & \lambda_3^{k-1} & \dots & \lambda_k^{k-1} \end{bmatrix} \begin{bmatrix} \alpha_1 z_1 \\ \alpha_2 z_2 \\ \alpha_3 z_3 \\ \dots \\ \alpha_k z_k \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \dots \\ 0 \end{bmatrix}$$

The matrix is the Vandermonde matrix, and we showed in a homework problem that if all the λ_i are distinct, the determinant of this matrix is nonzero, thus $\alpha_i z_i = 0$ for each i, and since $z_i \neq 0$, $\alpha_i = 0$.

- 7. Since the sum of the algebraic multiplicities is N, the sum of the geometric multiplicities is less than or equal to N. If it is equal to N, then A has a complete set of N linearly independent eigenvectors, because there are n_i independent eigenvectors for each λ_i , and we saw in (6) that eigenvectors for different eigenvalues are independent. So load up all N linearly independent eigenvectors in the columns of a new matrix S. Then AS = SD, where D is a diagonal matrix with the eigenvalues of A along the diagonal, and $A = SDS^{-1}$ and we say that A is diagonalizable (similar to a diagonal matrix).
- 8. If all eigenvalues are distinct, then $1 \le n_i \le m_i = 1$ and so $n_i = m_i$ for each i, and A has a complete set of eigenvectors and is therefore diagonalizable. If A has eigenvalues of algebraic multiplicity greater than 1, it will be diagonalizable only if no eigenvalues are defective.