
Notes on Chapter 3

1. The eigenvalues λi of an N by N matrix A are the (possibly complex) roots

of the characteristic polynomial det(λI − A). This N th degree polynomial

can be factored as

(λ− λ1)
m1(λ− λ2)

m2 ...(λ− λk)
mk

2. mi is called the algebraic multiplicity of the eigenvalue λi. The sum of the

algebraic multiplicities is always N.

3. For each eigenvalue λi the set of solutions to (λiI − A)z = 0 (the set of

eigenvectors corresponding to λi) is a subspace of RN , called the eigenspace

for that eigenvalue. The dimension of the eigenspace corresponding to λi is

called the geometric multiplicity, ni, of this eigenvalue.

4. Now let’s choose a basis for the eigenspace of λ1, and place these n1 vec-

tors in the first n1 columns of a matrix S (ni is the geometric multiplicity

of λi). Choose the remaining columns of this N by N matrix so that they

form a basis for RN (recall the extension to a basis theorem). Then AS =

SE, where E has the form:
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5. Since S has an inverse, A = SES−1 (A is ”similar” to E), so

det(λI − A) = det (λSS−1 − SES−1) = det (S(λI − E)S−1) =

det(S)det(λI − E)det(S−1) = det(SS−1)det(λI − E) = det(λI − E)

so A and E have exactly the same characteristic polynomial, and the char-

acteristic polynomial for E contains the factor (λ − λ1)
n1 . Thus the al-

gebraic multiplicity m1 is as least as large as the geometric multiplicity

n1. The same is clearly true for all eigenvalues, so in general we see that

1 ≤ ni ≤ mi. If ni < mi, the eigenvalue λi is said to be ”defective” (it’s

missing some of its eigenvalues).
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6. Any set of eigenvectors zi corresponding to distinct eigenvalues λi are in-

dependent. To show this, assume
∑k

i=1
αizi = 0. Then by multiplying both

sides of this equation by Aj we get:
∑k

i=1
αiA

jzi =
∑k

i=1
αiλ

j
izi = 0

If we take j=0,...,k-1, we get k equations for the k unknowns αizi, i =
1, ..., k:
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The matrix is the Vandermonde matrix, and we showed in a homework prob-

lem that if all the λi are distinct, the determinant of this matrix is nonzero,

thus αizi = 0 for each i, and since zi 6= 0, αi = 0.

7. Since the sum of the algebraic multiplicities is N, the sum of the geometric

multiplicities is less than or equal to N. If it is equal to N, then A has a

complete set of N linearly independent eigenvectors, because there are ni

independent eigenvectors for each λi, and we saw in (6) that eigenvectors for

different eigenvalues are independent. So load up all N linearly independent

eigenvectors in the columns of a new matrix S. Then AS = SD, where D is

a diagonal matrix with the eigenvalues of A along the diagonal, and A =
SDS−1 and we say that A is diagonalizable (similar to a diagonal matrix).

8. If all eigenvalues are distinct, then 1 ≤ ni ≤ mi = 1 and so ni = mi for

each i, and A has a complete set of eigenvectors and is therefore diagonal-

izable. If A has eigenvalues of algebraic multiplicity greater than 1, it will

be diagonalizable only if no eigenvalues are defective.
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