
Hamilton-Cayley Theorem

1. Not every matrix is similar to a diagonal matrix, but every matrix is similar

to a (possibly complex) upper triangular matrix. We prove this by induction.

Obviously every 1 by 1 matrix is similar to an upper triangular matrix. As-

sume every n-1 by n-1 matrix is similar to an upper triangular matrix. Then

let A be an n by n matrix; and let λ1 be an eigenvalue, with eigenvector u1.

Then put u1 in the first column of S, and pick the other columns of S to

complete a basis for Cn, and then AS = SB, or A = SBS−1 where B has

the form:

[

λ1 wT

0 B1

]

Since B1 is an n-1 by n-1 matrix, B1 = P1T1P
−1

1 , where T1 is an upper

triangular n-1 by n-1 matrix. Then it can be verified that (remember that

block matrices can be multiplied as if the blocks were just the elements,

provided the block sizes are compatible):

[

λ1 wT

0 B1

]

=

[

1 0
0 P1

] [

λ1 wTP1

0 T1

] [

1 0
0 P−1

1

]

or B = PTP−1.

Now since A = SBS−1 = S(PTP−1)S−1 = (SP )T (SP )−1, A is similar

to an upper triangular matrix.

2. If p(T ) =
∑

n

i=0
αiT

i = 0 for a certain matrix polynomial, and A is similar

to T, then p(A) = 0. Proof: since A = STS−1, Ai = ST iS−1, so p(A) =
∑

n

i=0
αiST

iS−1 = Sp(T )S−1 = 0.

3. (Hamilton-Cayley Theorem) If p(λ) is the characteristic polynomial for A,

then p(A) = 0. Proof: A is similar to an upper triangular matrix T, whose

diagonal entries are the eigenvalues of T, and therefore also of A. Assume

multiple eigenvalues are grouped together on the diagonal of T, so that T

has the form:
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









T1 X X ...

0 T2 X ...

0 0 T3 ...

... ... ... ...











where Ti is an upper triangular block of size mi by mi, wheren mi is the

algebraic multiplicity of λi, and Ti has λi in each diagonal position.

Now the characteristic polynomial can be factored

p(λ) = (λ− λ1)
m1(λ− λ2)

m2(λ− λ3)
m3 ...

So

p(T ) = (T − λ1I)
m1(T − λ2I)

m2(T − λ3I)
m3 ...

It can be verified by direct calculation that if T is a block triangular matrix

then the diagonal blocks of Tm are just the mth powers of the diagonal

blocks of T. Thus (T − λ1I)
m1 has the form:











(T1 − λ1I)
m1 X X ...

0 (T2 − λ1I)
m1 X ...

0 0 (T3 − λ1I)
m1 ...

... ... ... ...











Now N = (T1 − λ1I) is an m1 by m1 upper triangular matrix with 0s

on the diagonal, and it can be verified that such a matrix is nilpotent, with

Nm1 = 0. Thus (T − λ1I)
m1 has the form:











0 X X ...

0 T ′

2
X ...

0 0 T ′

3
...

... ... ... ...











Similarly, (T − λ2I)
m2 has the form:











T ′

1
X X ...

0 0 X ...

0 0 T ′

3
...

... ... ... ...










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and (T − λ3I)
m3 has the form:











T ′

1
X X ...

0 T ′

2
X ...

0 0 0 ...

... ... ... ...











4. The final step in the proof of Hamilton-Cayley is to show that (T−λ1I)
m1(T−

λ2I)
m2(T − λ3I)

m3 ... is the zero matrix, so that p(T) = 0 and thus p(A)

= 0. Notice that (T − λ1I)
m1 is zero in the first column block (ie, first

m1 columns). Then you can verify by multiplying the block forms for

(T − λ1I)
m1 and (T − λ2I)

m2 that this product is zero in the first two

column blocks (ie, first m1 + m2 columns). Then verify that the product

(T−λ1I)
m1(T−λ2I)

m2(T−λ3I)
m3 is zero in the first three column blocks

(first m1 +m2 +m3 columns), and so on, so that the final product p(T) is

zero in all columns.
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