Notes on Chapter 5

1. If H is Hermitian (H = H™), all eigenvalues of H are real.
Proof: if Hz = Az, then
Motz = 2" (\2) = 2*(Hz) = (H*2)* 2 = (Hz)*z = (\2)*2 = A\2*2
Since 2*z = ||z||? # 0, then A\ = \ so ) is real.

2. If H is Hermitian, we prove that H is “unitarily similar” (unitarily equiva-
lent) to a diagonal matrix, that is, that # = SDS~!, where D is diagonal
and S is unitary. Note that since .S = SD, this means that H has an or-
thonormal basis of eigenvectors. The proof is by induction. Obviously it
is true for any 1 by 1 matrix, just take S=I. Assume the claim is true for
every n-1 by n-1 matrix. Then let H be an n by n Hermitian matrix; and
let A\; be an eigenvalue, with eigenvector u;, of norm (2-norm) one. Then
put u; in the first column of S, and pick the other columns of S to complete
an “orthonormal” basis for C, so that S is unitary, and then HS = SB, or
H = SBS~! where B has the form:

)\1 UJT
0 B

Now since H is Hermitian, B = S™'HS = S*HS is also Hermitian, be-
cause B* = (S*HS)* = S*H*S = S*HS = B. Thus the first row of B
is just the conjugate of the first column, which means w = 0, and B; must
be a Hermitian n-1 by n-1 matrix. Thus by assumption, B, = P,D;P; ! =
Py D, Py where D, is diagonal and P, is unitary. Then:

B_ A0 10 A0 1 0
1 0B | |0 P 0 Dy ||0 Pr
or B = PDP*, where P is unitary.

Now since H = SBS* = S(PDP*)S* = (SP)D(SP)*, H is unitarily
similar to a diagonal matrix (note that SP is unitary).

3. A positive definite” matrix is a Hermitian matrix whose eigenvalues are
all positive. An equivalent definition is, it is a Hermitian matrix such that
2*Hz > 0 for all z # 0. Proof that the two definitions are equivalent: If
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all eigenvalues are positive, H = S*D.S for a unitary matrix S and diagonal
matrix D with all diagonal entries positive. Then

ZHz = 2*(S*DS)z = (S2)*D(Sz) = =N \i|si]? > 0

where the s; are the components of the (non-zero) vector Sz. On the other
hand, if 2*Hz > 0 for all nonzero vectors z, all eigenvalues of H are posi-
tive, because if Hz = 2,0 < 2*Hz = A\z*z = )\||z||3 and so A > 0.

Note that A*A for any A (even non-square matrices) is Hermitian, and at
least “’positive semi-definite”, which means all eigenvalues are greater than
or equal to 0. Proof: if A*Az = )z, then

AMIz|1? = Az*2 = 2*(\2) = 2" (A*Az) = (A2)* Az = ||Az||* > 0,50 A > 0.

. The Power Method

Suppose A is diagonalizable (eg, unitary, Hermitian, all distinct eigenval-
ues,...) and it has one eigenvalue \; which is greater in absolute value than
all others. Then if z( is chosen ”at random” and the power method is defined
by 2,11 = Ay, then \["z), converges to an eigenvector corresponding to

. < > . oy :
A1, and the quotient =Z2*"t= converges to A, with probability one. Proof:

M Frp = A\ P ARy = S(ATFDF)S g

where D is a diagonal matrix with the eigenvalues of A on the diagonal, and
D;; = )\ fori = 1,...,my, where m; is the multiplicity of ;. Since \;
is larger in absolute value than the other eigenvalues, as k goes to infinity,
A ¥ DF converges to a diagonal matrix E, with E;; = 1 fori = 1, ..., m; and
E;; = 0 otherwise. So \[ "z, converges to f = SES~'z,. To verify that
f is an eigenvector, we compute Af = SDS 'SES~'zy = SDES 'z, =
MSES™txy = M\ f. Note that we have used DE = )\, E, which can be
verified by writing out the diagonal matrices D and E. Now SES~! is not
the zero matrix, because if it were, E would be the zero matrix and it isn’t
(quite). Therefore the null space of SES~! is of dimension N-1 or less,
and so the probability that f is not the zero vector is one, if z( is chosen

randomly. Finally, SZktLZ6=> — ) AL A > which converges to
y. y’ <zp,xp> 1 <>\l_ka?k,>\1_kl‘k> g
<ff> _
A =P = AL

a. The power method still works even if A is not diagonalizable, but the
proof is more difficult. It will not work if there is more than one eigen-
value tied for largest in absolute value; to find the largest eigenvalue,
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there has to BE a largest eigenvalue. Note that a largest eigenvalue of
multiplicity greater than 1 is ok, but two different eigenvalues tied for
largest is not ok.

b. Note that the speed of convergence is faster if the second largest eigen-
value is much smaller than the largest, because then A;* D* converges
to E faster.

c. The power method only finds the largest eigenvalue. However, since
the eigenvalues of B = (A — pI)~! are (\; — p)~', we can apply
the power method to find the largest eigenvalue of B, which will be
(A, — p)~', where ), is the eigenvalue of A closest to p. So we can
choose a value for p and ”go fishing” for the eigenvalue of A closest
to p. (Choose p=0 if you want the smallest eigenvalue of A.)

5. The Singular Value Decomposition

The “singular value decomposition” of an arbitrary M by N matrix is A =
UDV*, where U is an M by M unitary matrix, V is an N by N unitary
matrix, and D is an M by N diagonal matrix. The diagonal elements of D
are called the singular values of A. First, let’s suppose A is a nonsingular
square (N by N) matrix. Even though A may be nonsymmetric, A* A is Her-
mitian and positive definite, so there exists an unitary matrix V such that
V*A*AV = D?, where D? is diagonal with the (real and positive) eigen-
values of A*A. Then we set U = AVD ! and A = UDV* is a singular
value decomposition, because UDV* = AVD1DV* = AVV* = A, and
UU = (AVD )*AVD™ = DY (V*A*AV)D™! = D™'D?D"' = I, so
U is unitary. Notice that the singular values are just the square roots of the
eigenvalues of A* A, which are positive if A is nonsingular, and nonnegative
for any A. The largest singular value of A is equal to ||A||2, where this is
the matrix norm subordinate to the L, vector norm. Details on how to find
the singular value decomposition for general (rectangular) A can be found
in my Computational Linear Algebra text, in problem 3.17.

The singular value decomposition has a number of uses, here is one. If
A = UDV*, and u; is the i*" column of U, v} is the i"" row of V*, and Dj; is
the 7" element of the diagonal matrix D, we can show that A = Y, Dj;u;vf.
If A is a large matrix with many zero or nearly zero singular values D;;, we
can throw away the corresponding small terms in this series, leaving us with
a more compact approximate representation of A. If there are only L terms
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left after we discard the smaller terms, then we have an approximation of
the M by N matrix A which requires only L(M+N) words of memory, which
may be small compared to MN. See p195 of the Allen text for an example of
how the singular value decomposition can be used to compress a bit matrix
picture, without losing too much clarity.



