
Notes on Chapter 5

1. If H is Hermitian (H = H∗), all eigenvalues of H are real.

Proof: if Hz = λz, then

λz∗z = z∗(λz) = z∗(Hz) = (H∗z)∗z = (Hz)∗z = (λz)∗z = λ̄z∗z

Since z∗z = ‖z‖2 6= 0, then λ = λ̄ so λ is real.

2. If H is Hermitian, we prove that H is ”unitarily similar” (unitarily equiva-

lent) to a diagonal matrix, that is, that H = SDS−1, where D is diagonal

and S is unitary. Note that since HS = SD, this means that H has an or-

thonormal basis of eigenvectors. The proof is by induction. Obviously it

is true for any 1 by 1 matrix, just take S=I. Assume the claim is true for

every n-1 by n-1 matrix. Then let H be an n by n Hermitian matrix; and

let λ1 be an eigenvalue, with eigenvector u1, of norm (2-norm) one. Then

put u1 in the first column of S, and pick the other columns of S to complete

an ”orthonormal” basis for Cn, so that S is unitary, and then HS = SB, or

H = SBS−1 where B has the form:

[

λ1 wT

0 B1

]

Now since H is Hermitian, B = S−1HS = S∗HS is also Hermitian, be-

cause B∗ = (S∗HS)∗ = S∗H∗S = S∗HS = B. Thus the first row of B

is just the conjugate of the first column, which means w = 0, and B1 must

be a Hermitian n-1 by n-1 matrix. Thus by assumption, B1 = P1D1P
−1
1 =

P1D1P
∗

1 where D1 is diagonal and P1 is unitary. Then:

B =

[

λ1 0
0 B1

]

=

[

1 0
0 P1

] [

λ1 0
0 D1

] [

1 0
0 P ∗

1

]

or B = PDP ∗, where P is unitary.

Now since H = SBS∗ = S(PDP ∗)S∗ = (SP )D(SP )∗, H is unitarily

similar to a diagonal matrix (note that SP is unitary).

3. A ”positive definite” matrix is a Hermitian matrix whose eigenvalues are

all positive. An equivalent definition is, it is a Hermitian matrix such that

z∗Hz > 0 for all z 6= 0. Proof that the two definitions are equivalent: If
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all eigenvalues are positive, H = S∗DS for a unitary matrix S and diagonal

matrix D with all diagonal entries positive. Then

z∗Hz = z∗(S∗DS)z = (Sz)∗D(Sz) =
∑N

i=1 λi|si|
2 > 0

where the si are the components of the (non-zero) vector Sz. On the other

hand, if z∗Hz > 0 for all nonzero vectors z, all eigenvalues of H are posi-

tive, because if Hz = λz, 0 < z∗Hz = λz∗z = λ‖z‖22 and so λ > 0.

Note that A∗A for any A (even non-square matrices) is Hermitian, and at

least ”positive semi-definite”, which means all eigenvalues are greater than

or equal to 0. Proof: if A∗Az = λz, then

λ‖z‖2 = λz∗z = z∗(λz) = z∗(A∗Az) = (Az)∗Az = ‖Az‖2 ≥ 0, so λ ≥ 0.

4. The Power Method

Suppose A is diagonalizable (eg, unitary, Hermitian, all distinct eigenval-

ues,...) and it has one eigenvalue λ1 which is greater in absolute value than

all others. Then if x0 is chosen ”at random” and the power method is defined

by xk+1 = Axk, then λ−k
1 xk converges to an eigenvector corresponding to

λ1, and the quotient
<xk+1,xk>

<xk,xk>
converges to λ1, with probability one. Proof:

λ−k
1 xk = λ−k

1 Akx0 = S(λ−k
1 Dk)S−1x0

where D is a diagonal matrix with the eigenvalues of A on the diagonal, and

Dii = λ1 for i = 1, ...,m1, where m1 is the multiplicity of λ1. Since λ1

is larger in absolute value than the other eigenvalues, as k goes to infinity,

λ−k
1 Dk converges to a diagonal matrix E, with Eii = 1 for i = 1, ...,m1 and

Eii = 0 otherwise. So λ−k
1 xk converges to f = SES−1x0. To verify that

f is an eigenvector, we compute Af = SDS−1SES−1x0 = SDES−1x0 =
λ1SES−1x0 = λ1f . Note that we have used DE = λ1E, which can be

verified by writing out the diagonal matrices D and E. Now SES−1 is not

the zero matrix, because if it were, E would be the zero matrix and it isn’t

(quite). Therefore the null space of SES−1 is of dimension N-1 or less,

and so the probability that f is not the zero vector is one, if x0 is chosen

randomly. Finally,
<xk+1,xk>

<xk,xk>
= λ1

<λ
−(k+1)
1 xk+1,λ

−k

1 xk>

<λ−k

1 xk,λ
−k

1 xk>
which converges to

λ1
<f,f>

<f,f>
= λ1.

a. The power method still works even if A is not diagonalizable, but the

proof is more difficult. It will not work if there is more than one eigen-

value tied for largest in absolute value; to find the largest eigenvalue,
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there has to BE a largest eigenvalue. Note that a largest eigenvalue of

multiplicity greater than 1 is ok, but two different eigenvalues tied for

largest is not ok.

b. Note that the speed of convergence is faster if the second largest eigen-

value is much smaller than the largest, because then λ−k
1 Dk converges

to E faster.

c. The power method only finds the largest eigenvalue. However, since

the eigenvalues of B = (A − pI)−1 are (λi − p)−1, we can apply

the power method to find the largest eigenvalue of B, which will be

(λp − p)−1, where λp is the eigenvalue of A closest to p. So we can

choose a value for p and ”go fishing” for the eigenvalue of A closest

to p. (Choose p=0 if you want the smallest eigenvalue of A.)

5. The Singular Value Decomposition

The ”singular value decomposition” of an arbitrary M by N matrix is A =
UDV ∗, where U is an M by M unitary matrix, V is an N by N unitary

matrix, and D is an M by N diagonal matrix. The diagonal elements of D

are called the singular values of A. First, let’s suppose A is a nonsingular

square (N by N) matrix. Even though A may be nonsymmetric, A∗A is Her-

mitian and positive definite, so there exists an unitary matrix V such that

V ∗A∗AV = D2, where D2 is diagonal with the (real and positive) eigen-

values of A∗A. Then we set U = AVD−1 and A = UDV ∗ is a singular

value decomposition, because UDV ∗ = AVD−1DV ∗ = AV V ∗ = A, and

U∗U = (AVD−1)∗AVD−1 = D−1(V ∗A∗AV )D−1 = D−1D2D−1 = I, so

U is unitary. Notice that the singular values are just the square roots of the

eigenvalues of A∗A, which are positive if A is nonsingular, and nonnegative

for any A. The largest singular value of A is equal to ‖A‖2, where this is

the matrix norm subordinate to the L2 vector norm. Details on how to find

the singular value decomposition for general (rectangular) A can be found

in my Computational Linear Algebra text, in problem 3.17.

The singular value decomposition has a number of uses, here is one. If

A = UDV ∗, and ui is the ith column of U, v∗i is the ith row of V ∗, and Dii is

the ith element of the diagonal matrix D, we can show that A =
∑

i Diiuiv
∗

i .

If A is a large matrix with many zero or nearly zero singular values Dii, we

can throw away the corresponding small terms in this series, leaving us with

a more compact approximate representation of A. If there are only L terms
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left after we discard the smaller terms, then we have an approximation of

the M by N matrix A which requires only L(M+N) words of memory, which

may be small compared to MN. See p195 of the Allen text for an example of

how the singular value decomposition can be used to compress a bit matrix

picture, without losing too much clarity.
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