
Sept 12 Homework

1. Explain why the answer to Schumer problem 1.14 is Fn+1.

2. Twin primes are numbers n,n+2 that are both primes (eg: 11,13). Many

large twin primes have been found. Triplet primes are numbers n,n+2,n+4

that are all three prime (eg: 3,5,7). Prove that there are no other triplet

primes. (Hint: consider division by 3.)

3. Use your intuition to answer the following questions as best you can; there

is no need to justify your answer, but there is a correct answer in each case.

a. If P (n) ≡[fraction of numbers between n-1000 and n+1000 which are

prime], do you think P(n) tends to 0 or 1 or something between 0 and

1, as n tends to infinity?

b. If N and M are randomly chosen large integers, the probability that

N and M are relatively prime is about (multiple choice): 0%, 60% or

100%?

c. Do you think mathematicians will ever discover an explicit formula

f(n) (like n! + 1 or 22
n

+ 1, which often are prime, but not always)

which generates a different prime number for every integer n?

4. Use Mathematical Induction to prove that |sin(nx)| ≤ n ∗ sin(x) for any

0 ≤ x ≤ π, for all positive integers n.

5. Prove that if two (diagonally) opposite corner squares are removed from

a chess board, the remaining 62 squares cannot be covered by 31 normal

(covering two squares each) dominoes.

6. The binary sort algorithm is defined recursively as follows: A list of N =
2m numbers is divided into two halves. The first N/2 = 2m−1 numbers are

sorted using the binary sort algorithm, and the last N/2 = 2m−1 numbers

are sorted using the binary sort algorithm. Then the two halves are merged,

that is, the first number in the first list is compared with the first number in

the second list, and the smaller becomes the first number in the final sorted

list, etc. Naturally, if N = 1(m = 0) there is nothing to do.

The MATLAB program below implements the binary sort algorithm recur-

sively.

1

function F = bsort(F,M)

% IF M=0 (N=1), DO NOTHING

if (M==0)

return

end

N = 2ˆM;

N2 = N/2;

% COPY FIRST HALF OF F ONTO F1

% AND SECOND HALF OF F ONTO F2

F1(1:N2) = F(1:N2);

F2(1:N2) = F(N2+1:N);

% SORT FIRST HALF OF F

F1 = bsort(F1,M-1);

% SORT LAST HALF OF F

F2 = bsort(F2,M-1);

% MERGE F1 AND F2 INTO F

I1 = 1;

I2 = 1;

for I=1:N

if (I1 > N2)

F(I) = F2(I2);

I2 = I2 + 1;

continue

end

if (I2 > N2)

F(I) = F1(I1);

I1 = I1 + 1;

continue

end

if (F1(I1) < F2(I2))

F(I) = F1(I1);

I1 = I1 + 1;

else

F(I) = F2(I2);

I2 = I2 + 1;

end

end

2

If Wm is defined to be the number of comparisons required by the binary

sort algorithm to sort 2m numbers, use induction to prove that Wm = m2m.

Consider that the ”merge” loop does N comparisons. (It actually does sev-

eral other operations per loop pass, but only one comparison of numbers

in our list.) Note that this means the binary sort algorithm requires only

Nlog(N) comparisons, MUCH faster than the usual ”bubble sort” algo-

rithm which requires about 1

2
N2 comparisons.

7. If E0 = 2, En+1 = (E0 ∗E1 ∗E2 ∗ ... ∗En) + 1 (as in problem 4 of the last

homework), either prove that all the En are prime, or find one which is not

prime.

3

