
Oct 31 Homework

Some of the problems below don’t really fit into chapter 11, but that’s ok,

this is a course on mathematical problem solving, and these are all mathematical

problems!

1. A fascinating result from probability theory is that if you start with ANY

probability distribution, take N random samples and average them, and re-

peat this many times, if N is large, these averages will distribute them-

selves around the mean µ with a ”normal” distribution. More precisely,

the variable z = x−µ

σ/
√
N

, where σ is the standard deviation of the original

distribution, will have a normal distribution n(z) = e−z2/2/
√
2π. In other

words, no matter what shape the original distribution has, the distribution

of averages will be nearly a normal curve, with the same average, but a

standard deviation
√
N times smaller. (Hence, a poll of 400 voters has

about half the margin of error that a poll of 100 voters has.) Show that

I ≡
∫∞
−∞ e−z2/2dz =

√
2π, so that n(z) is really a probability distribution.

(Hint: write I2 as a double integral, over the entire plane, and convert to

polar coordinates.) It seems quite remarkable that the two most famous ir-

rational numbers in mathematics, e and π, both show up in the ”central limit

theorem” of probability, which seems far removed from the natural habitat

of e (calculus) or of π (geometry).

2. Schumer problem 11.6 (a-c).

3. As mentioned in the text, Colin Percival computed π to 1015 binary digits,

in 2000.

a. Calculate how many terms N of the series for arctan(1) (11.6) would

be required to get that much accuracy. Express your answer in the

form 10n. (Hint: For a monotone alternating series, the error after N

terms is always less than the next term, in absolute value.)

b. Calculate how many terms N of the series for arctan(1/3) would be

required to get that much accuracy. Express your answer in the form

10n again. Since the expansion of arctan(1/3) is the slower convering

series, this shows that the work to calculate π using the Hutton formula

from problem 11.6c is dramatically less than for the straightforward

arctan series (11.6).
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4. A set of numbers is said to be ”countable” if you can list them all in a (pos-

sibly infinite) sequence. For example, the integers are countable because

you can list them all as follows: 0,-1,1,-2,2,-3,3,... The set of all real num-

bers between 0 and 1 is not countable, because if you give me any list of

these numbers, I can find one which is nowhere in your list: write out the

decimal representation for each number (which will be infinitely long in

many cases), and I can construct a number which differs in the first decimal

place from your first number, differs in the second place from your second

number, and so on, and thus is different from every number in your list.

a. If you try to use the above proof to show that the set of all rational

numbers between 0 and 1 is not countable, what goes wrong?

b. In fact, show that the set of rational numbers between 0 and 1 is count-

able, by indicating how one can list them. Thus although there are an

infinite number of rational numbers between 0 and 1, and an infinite

number of irrational numbers, in a real sense there are many more

irrational numbers.

c. Is the set of points in the xy plane of the form (p,q), where p and q are

rational numbers between 0 and 1, countable? Justify your answer.

5. (Extra credit) Consider the function u(x, y) = x+y, and notice that ∂u
∂x

= 1.

Now make the change of variables:

x = p

y = p+ q

and note that u(p, q) = x+ y = p+ (p+ q) = 2p+ q, so that ∂u
∂p

= 2. But

since x and p are always equal, how can ∂u
∂p

be different from ∂u
∂x

??

6. (Extra credit!) In our text, the claim is made that the BBP formula for π,

shown on page 113, allows one to ”jump” to the nth hexadecimal digit, since

the series is of the form
∑∞

n=0
an
16n

. If the an were integers it would indeed

be easy to jump to a given hex digit, but most of the coefficients an do not

even have terminating hexadecimal representations, so how is it easier to

extract the nth hex digit of π using the BBP formula, than using any of the

other formulas in this chapter?
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Since writing the above, a student has pointed me to an explanation of the

use of the BBP formula, at:

http://en.wikipedia.org/wiki/Bailey-Borwein-Plouffe formula

Certainly, saying this formula allows one to ”jump” to the nth hexadecimal

digit is an exaggeration. Basically, if you want, say the 1000000th hex digit

of π, you multiply both sides of the BBP formula on page 113 by 16999999,

then the 1000000th hex digit becomes the first digit after the decimal point,

so to find this digit you simply throw away the integer part of each of the

first 1000000 terms in the new series (the remaining terms will have no

integer parts). But you still have to compute the contributions of the first

million terms to the fractional part, and an unpredictable small number of

terms beyond that. Normally one or two beyond the millionth term will be

sufficient, but if you are very unlucky and the sum of the first million terms

has fractional part 0.8FFFFFFFFFFFF16 then you may need to com-

pute another 10 terms or so before you can be sure whether the first hex

digit is an 8 or 9. Further, even though you have thrown away the integer

parts of each term in the series, the sum of the fractional parts will probably

not be between 0 and 1, so at the end, you still have to add or subtract an

integer to make it between 0 and 1.

But the above procedure could be used to compute the 1000000th digit of

π using any rapidly convergence series, so what is special about the BBP

formula? After the series has been multiplied by 16999999, the contribution

of the kth term (let’s just look at the first of the 4 parts of the BBP formula)

to the fractional part is computed as (4 ∗ 16999999−k)mod(8k+1)/(8k + 1), but

it isn’t obvious, and isn’t explained in the ”wikipedia” reference, how one

can compute this without resorting to very long (4000000 bit) integer data

types, as normally would be required, or why the fractional parts of these

terms are easier to compute than the fractional parts of the terms of say,

series (11.7), after multiplication by 16999999. Extra credit for you if you

can now explain how the BBP formula makes computing the millionth digit

of π easier than formulas such as (11.7). (Hint: this is related to a problem

in your Sept 26 homework.)
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