
Practice Problem (not to be handed in)

To familiarize yourself with PDE2D, first solve the damped spring problem
(1.7, p6)mUtt + cUt + kU = 0 with U(0) = 0, Ut(0) = 10, take the massm = 1,
the spring constantk = 101 and the damping coefficientc = 2. Write this as a
system of two first order ordinary differential equations, use the PDE2D GUI to
generate the program, and solve out to aboutt = 3. This is a ”0D” time-dependent
problem, and the exact solution isU(t) = e−tsin(10t).

Problems

1. a. Solve the 1D steady-state beam bending problem of Exercise 4.2.8
(p84), with E = 10, I(x) = 1, L = 2.5 (E = elastic modulus, I =
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moment of inertia, L = beam length). Also, putf(x) = −1, so there
is a constant downward force, namely the weight of the uniform beam
itself. The boundary conditions specify that the beam is clamped at
the left end, and free and unsupported at the right end. Also solve the
boundary problem analytically and compute theL1 norm of the error,
that is, the integral of|u−utrue|. SetE, I, L, f as parameters, so their
values could be easily changed. Note that parameters and variables
must begin with a letter in the rangeA − H or O − Z, otherwise they
will be integers, for example,L would be rounded down to 2, so use
(for example)RL instead ofL.

Use the PDE2D GUI (pde2dgui [name]) which means the collocation
method will be used.

b. Repeat the problem using the Galerkin method. For this youmust use
the Interactive Driver (pde2d [name]). Notice that the format for the
PDEs and (especially) the boundary conditions are very different than
for the collocation method, so pay close attention to the documenta-
tion, especially to the hint on how to handle ”mixed” (eg, onefixed,
one free) boundary conditions.

2. a. Solve the 1D time-dependent heat conduction/convection problem of
Example 6.1 (p108), withρ = 1.1, C = 0.18, v = 2.0, κ = 0.1, L =
5, T0 = 30, Tout = 10, k/R = 0.2, Tinit(z) = T0 + (Tout − T0)z/L
(ρ = fluid density, C = fluid specific heat, v = fluid velocity,κ = fluid
heat conductivity, L = pipe length,T0 = temperature of entering fluid,
Tout = temperature of pipe wall and outlet, k = heat transfer coefficient
between fluid and pipe wall, and R = pipe radius). Solve this forward
in time to t = 2. Note that the spatial variable must be calledx, not
z, and you will not be able to call the temperature T, because T is
reserved for time, so call it TMP, and use names TMP0, TMPout in
place of T0,Tout. You can use EITHER the collocation OR Galerkin
method.

2



b. Now replace the boundary condition at the outlet (z = L) by the
nonlinear radiation boundary condition at the top of page 68, with
σ = 10−5 (σ = radiation heat transfer coefficient) and repeat the prob-
lem. You will need to reset the variable LINEAR to .FALSE. (collo-
cation method only), and FDIFF to .TRUE..
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c. Repeat problem 2a with no conduction,κ = 0. Now this is the hyper-
bolic transport problem of Example 8.1 (p153), and there should now
be ”no” boundary condition at the outlet, since it is first order in space.
Note that without conduction (diffusion of heat), the discontinuity in
the derivative is not smoothed out now, but simply transported forward
with velocityv.
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3. In mathematical finance, PDEs similar to the heat equationare often solved.
For example, consider the Black-Scholes PDE, section 5.3.9, p104:

∂u

∂t
+ 1
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∂x2 + rx∂u

∂x
− ru = 0

Here the solutionu(x, t) is the value of a European stock option, which
depends on the timet and the stock pricex at that time,σ is the ”volatility”
(standard deviation in the rate of return of the stock), andr is the risk-free
interest rate. The equation is similar to the backward heat equation, but it
is stable because it is solved backward in time. A ”call” option gives the
option holder the right to buy the stock at the predeterminedstrike priceE
at the maturity time,t = T . At the maturity time, the value of the option
is clearlymax(x − E, 0) because if the price then isx, if x > E, the value
of the option isx − E as that is the profit one could make by immediately
reselling at the going price, and ifx < E, the value of the option is0
because the option buyer will simply not exercise his optionto buy atE.
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Thus the final condition may be written asu(x, T ) = max(x − E, 0), and
the equation is solved backward tot = 0. The solutionu(x, 0) represents
the amount one should be expected to pay for the option at a timeT before
maturity, if the current price isx. If the stock price reaches0 at any time,
it can be assumed it will never be worthE, so the option is worthless then,
and the left boundary condition isu(0, t) = 0. If the stock price reaches
very large values, it can be assumed the price will remain above E, and so
the expected profit isx − E, hence the other boundary condition can be
∂u

∂x
(Smax, t) = 1.

This equation is solved on p117 ofFinancial Engineering with Finite El-
ements by Juergen Topper, John Wiley & Sons, 2005, usingE = 40, r =
0.1, σ = 0.2, Smax = 100, andT = 0.5. The solution is found both analyti-
cally and using PDE2D there, and both give, for example,u(39, 0) = 2.680.
Use PDE2D to solve this problem, and check your result atx = 39 against
this value. These type of math finance problems are generallyeasier to
set up using the collocation method, which does not require a”divergence”
formulation.
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