Practice Problem (not to be handed in)

To familiarize yourself with PDE2D, first solve the dampedisg problem
1.7, p6)mUy; + cU, + kU = 0 with U(0) = 0, U;(0) = 10, take the mass: = 1,
the spring constart = 101 and the damping coefficielat= 2. Write this as a
system of two first order ordinary differential equationse iuhe PDE2D GUI to
generate the program, and solve out to abheut3. This is a "0D” time-dependent
problem, and the exact solutionli&t) = e *sin(10t).
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Problems

1. a. Solve the 1D steady-state beam bending problem of Sredc2.8
(p84), with £ = 10,1(x) = 1,L = 2.5 (E = elastic modulus, | =
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moment of inertia, L = beam length). Also, pfitz) = —1, so there
is a constant downward force, namely the weight of the unifoeam
itself. The boundary conditions specify that the beam isnplad at
the left end, and free and unsupported at the right end. Alb® she
boundary problem analytically and compute thenorm of the error,
that is, the integral ofu — u,...|. SetE, I, L, f as parameters, so their
values could be easily changed. Note that parameters arabh
must begin with a letter in the range— H or O — Z, otherwise they
will be integers, for examplel, would be rounded down to 2, so use
(for example)R L instead ofL.

Use the PDE2D GUI (pde2dui [name]) which means the collocation
method will be used.

. Repeat the problem using the Galerkin method. For thiswyast use
the Interactive Driver (pde2d [name]). Notice that the fatrfor the
PDEs and (especially) the boundary conditions are vergdifft than
for the collocation method, so pay close attention to theudwnta-
tion, especially to the hint on how to handle "mixed” (eg, dixed,

one free) boundary conditions.

. Solve the 1D time-dependent heat conduction/cororegptioblem of
Example 6.1 (p108), with = 1.1,C = 0.18,v = 2.0,k = 0.1, L =
5Ty = 30,T, = 10,k/R = 0.2, Tinit(2) = To + (Towe — To)z/ L

(p = fluid density, C = fluid specific heat, v = fluid velocity,= fluid
heat conductivity, L = pipe lengtly = temperature of entering fluid,
T,.: =temperature of pipe wall and outlet, k = heat transfer coieffit
between fluid and pipe wall, and R = pipe radius). Solve thig/éod

in time tot = 2. Note that the spatial variable must be callechot

z, and you will not be able to call the temperature T, because T i
reserved for time, so call it TMP, and use names TMPO, TMPwout i
place of TO,Tout. You can use EITHER the collocation OR Gater
method.
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. Now replace the boundary condition at the outlet£ L) by the
nonlinear radiation boundary condition at the top of page \8&h

o = 107° (o = radiation heat transfer coefficient) and repeat the prob-
lem. You will need to reset the variable LINEAR to .FALSE. lfoe
cation method only), and FDIFF to .TRUE..
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. Repeat problem 2a with no conductians= 0. Now this is the hyper-
bolic transport problem of Example 8.1 (p153), and theraukhnow
be "no” boundary condition at the outlet, since it is first@rth space.
Note that without conduction (diffusion of heat), the distouity in
the derivative is not smoothed out now, but simply transggbfbrward
with velocity v.
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3. In mathematical finance, PDEs similar to the heat equatiemften solved.
For example, consider the Black-Scholes PDE, section, 553

u 1 %U%Q% +rzdt —ru=0
Here the solution(z, t) is the value of a European stock option, which
depends on the timeand the stock price at that timeg is the "volatility”
(standard deviation in the rate of return of the stock), amnlthe risk-free
interest rate. The equation is similar to the backward hgaagon, but it

is stable because it is solved backward in time. A "call” optgives the
option holder the right to buy the stock at the predetermstaéle priceEl

at the maturity timet = 7. At the maturity time, the value of the option
is clearlymax(z — E,0) because if the price thenis if x > E, the value

of the option isz — F as that is the profit one could make by immediately
reselling at the going price, and if < FE, the value of the option i§
because the option buyer will simply not exercise his optmbuy atF.
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Thus the final condition may be written asr, 7') = max(x — E,0), and
the equation is solved backward#e= 0. The solutionu(z,0) represents
the amount one should be expected to pay for the option ateditibefore
maturity, if the current price is. If the stock price reachdsat any time,

it can be assumed it will never be wort) so the option is worthless then,
and the left boundary condition i50,t) = 0. If the stock price reaches
very large values, it can be assumed the price will remaivelh and so
the expected profit is — F, hence the other boundary condition can be
(G, t) = 1.

ox

This equation is solved on p117 Bfnancial Engineering with Finite El-
ements by Juergen Topper, John Wiley & Sons, 2005, using- 40,r =
0.1,0 = 0.2, S, = 100, andT" = 0.5. The solution is found both analyti-
cally and using PDE2D there, and both give, for examp(89, 0) = 2.680.
Use PDEZ2D to solve this problem, and check your resuit-at39 against
this value. These type of math finance problems are genezalier to
set up using the collocation method, which does not requidévargence”
formulation.
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