
3. Consider an arch (half annulus, in 2D) described in polar coordinates as
6 < r < 10, 0 < θ < π. We want to solve the steady-state elasticity equa-
tions in this arch, that is, the equations 5.40 (p104), with the left hand side
equal to 0 (see section 5.2 for definitions of operators used in this equation).
TakeE = 100 andν = 0.2 (E = elastic modulus,ν = Poisson ratio), and
take the external force vector to be(f1, f2) = (0,−10), that is, there is a
constant downward force, namely the weight of the uniform arch itself. On
the two ends touching the ”ground” (θ = 0, π), the displacement vector is
zero,(U, V ) = (0, 0). On the top and bottom of the arch (r = 6, 10), there
are zero external forces, which means the following boundary conditions
are satisfied:

σxxNx + σxyNy = g1

σxyNx + σyyNy = g2
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where

σxx = E (1−ν)Ux+νVy

(1+ν)(1−2ν)

σxy = E Uy+Vx

2(1+ν)

σyy = E νUx+(1−ν)Vy

(1+ν)(1−2ν)

are stresses,(Nx, Ny) is the unit outward normal to the boundary, and(g1, g2)
is the external boundary force vector, in this caseg1 = g2 = 0. Nx andNy

are referenced in the boundary conditions as NORMx and NORMy.

Plot the resulting displacement vector field,(U, V ), and calculate the inte-
gral ofV in the entire arch. (Note: if you use the GUI, it will generateplots
of the gradients(Ux, Uy) and(Vx, Vy) by default, so just change IVAR1 to 1
and IVAR2 to 4 on one of these (in the Fortran) to get a plot of(U, V ).)

If you use the Galerkin method instead of collocation, you need to write the
equations in the form:

∂
∂x

σxx + ∂
∂y

σxy + f1 = 0
∂
∂x

σxy + ∂
∂y

σyy + f2 = 0

which is equivalent to 5.40, in the 2D case. If Galerkin is used, use the
initial triangulation option ITRI = 2, and note that on the free boundary,
(g1, g2) = (GB1,GB2).

4. a. Consider the fluid flow equations 5.26 (p100). As noted onpage
97 (for the 2D case), the fact that the divergence of the fluid ve-
locity (U, V ) is zero guarantees that there is a ”stream function”φ
such that(U, V ) = (φy,−φx), and the divergence equation 5.26a
(Ux + Vy = 0) is automatically satisfied for any stream function. Now
let’s replace the gravity force termρg by a general external force vec-
tor f = (f1, f2), and let us define the vorticity byω = Uy − Vx =
φxx + φyy. Then write out the two components of 5.26b and differen-
tiate the first with respect toy, and the second with respect tox, and
subtract, and show (yourself) that the pressure terms disappear, and
that we are left with the equation:
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ρ∂ω
∂t

+ ρ(φyωx − φxωy) + f2x − f1y = µ(ωxx + ωyy)

Together withω = φxx + φyy, we now have a system of two equations
for the two unknownsφ andω.

In this example we will find the steady-state flow (so the time deriva-
tive term is zero) in a pentagon with vertices at(−1,−1), (1,−1), (1, 1),
(0, 0.2), (−1, 1). We will assume an external forcef = (y,−x),
which tends to rotate the fluid around the origin. On the bottom of
the pentagon, we will apply ”free-slip” boundary conditions, V =
0, Uy = 0, and on the other four sides, we will apply ”no-slip” bound-
ary conditions,U = 0, V = 0. Verify that the free-slip conditions
are φ = 0, ω = 0, and that the no-slip conditions are equivalent
to settingφ and its normal derivative (φxNx + φyNy) to 0. Solve
this PDE problem, withρ = 1.1, µ = 0.1 (ρ is the fluid density,
µ is the fluid viscosity), and make vector plots of the fluid veloc-
ity (φy,−φx) and a contour plot of the stream function. (Hint: set
APRINT (1) = φy, BPRINT (1) = −φx and plot (A1,B1).) Also
compute the integral ofω. Because of the geometry, you will have to
use the Galerkin method, thus you cannot use the GUI.
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b. Increaseρ by a factor of 20 and re-solve the problem; this results in
flow with a larger Reynold’s number. If you have trouble getting con-
vergence of Newton’s method, you may need to multiply the nonlinear
terms bybeta = min(1.d0, (T −1)/5.d0), which means the first itera-
tion (T = 1), you are solving a linear problem, and you are increasing
the Reynold’s number gradually over the next 5 iterations.
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