4. Consider an arch (half annulus, in 2D) described in poterrdinates as
6 <r<10,0 <6 < w. We want to solve the steady-state elasticity equa-
tions in this arch, that is, the equations 5.40 (p104), withleft hand side
equal to O (see section 5.2 for definitions of operators uséus equation).
Take E = 100 andv = 0.2 (E = elastic modulusy = Poisson ratio), and
take the external force vector to 9é, f>) = (0, —10), that is, there is a
constant downward force, namely the weight of the uniforahatself. On
the two ends touching the "ground? & 0, ), the displacement vector is
zero,(U, V) = (0,0). On the top and bottom of the arch £ 6, 10), there
are zero external forces, which means the following boundanditions
are satisfied:

UxxNx + nyNy =0
OpyNy + 0yy Ny = g2
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where

Oy = E (1-)Ur 41V

[}14—1‘//)(1—21/)
y+Va
Ozy = EQ(yl—H/)

_ U 4+1-0)V,
oy = By i)

are stresses (note: in,,, the zz does NOT indicate differentiation, it is
just a subscript)(V,, N, ) is the unit outward normal to the boundary, and
(91, g2) is the external boundary force vector, in this case- g, = 0. N,
andN, are referenced in the boundary conditions as NORMx and NOQRMy

Plot the resulting displacement vector fie{d], ), and calculate the inte-
gral of V' in the entire arch. (Note: if you use the GUI, it will generptets
of the gradientsU,, U, ) and(V,, V,) by default, so just change IVAR1 to 1
and IVAR2 to 4 on one of these (in the Fortran) to get a plattafl/).)

If you use the Galerkin method instead of collocation, yoedh® write the
equations in the form:

0 o —
%U:c:v + 8_yo-$y + f1 =0

2] 2] —
%o’xy + a_ygyy _|_ f2 — 0

which is equivalentto 5.40, in the 2D case. If Galerkin isdysese the initial
triangulation option ITRI = 2, and note that on the free baamd g, g») =
(GB1,GB2). Stress field plots can also be made, but this isgit
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5. a. Consider the fluid flow equations 5.26 (p100). As notedbage
97 (for the 2D case), the fact that the divergence of the flud v
locity (U, V) is zero guarantees that there is a "stream function”
such that(U,V) = (¢,, —¢.), and the divergence equation 5.26a
(U, +V, = 0) is automatically satisfied for any stream function. Now
let’s replace the gravity force terpy by a general external force vec-
tor f = (f1, f2), and let us define the vorticity by = U, — V, =
buz + ¢yy- Then write out the two components of 5.26b and differen-
tiate the first with respect tg, and the second with respectipand
subtract, and show (yourself) that the pressure terms pksapand
that we are left with the equation:



P%_u; + p(Pyws — Gawy) + f22 — fly = p(War + wyy)

Together withv = ¢, + ¢,,,, Wwe now have a system of two equations
for the two unknown® andw.

In this example we will find the steady-state flow (so the tiree\d-
tive term is zero) in a pentagon with verticegatl, —1), (1, —1), (1, 1),
(0,0.2),(—1,1). We will assume an external force = (y, —z),
which tends to rotate the fluid around the origin. On the bottdf
the pentagon, we will apply "free-slip” boundary conditor’ =
0,U, = 0, and on the other four sides, we will apply "no-slip” bound-
ary conditions,U = 0,V = 0. Verify that the free-slip conditions
arep = 0,w = 0, and that the no-slip conditions are equivalent
to setting¢ and its normal derivativeg(, N, + ¢,N,) to 0. Solve
this PDE problem, withp = 1.1, = 0.1 (p is the fluid density,

1 is the fluid viscosity), and make vector plots of the fluid welo
ity (¢,, —¢,) and a contour plot of the stream function. (Hint: set
APRINT(1) = ¢,, BPRINT(1) = —¢, and plot (A1,B1).) Also
compute the integral ab. Because of the geometry, you will have to
use the Galerkin method, thus you cannot use the GUI.
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b. Increasey by a factor of 20 and re-solve the problem; this results in
flow with a larger Reynold’s number. If you have trouble gegtcon-
vergence of Newton’s method, you may need to multiply thdinear
terms bybeta = min(1.d0, (T'—1)/5.d0), which means the first itera-
tion (7' = 1), you are solving a linear problem, and you are increasing
the Reynold’s number gradually over the next 5 iterations.
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