Derivation of Diffusion Equation

The diffusion equation (5.30) is one of the most importanERIpplications,
so let’s see how it is derived. We |€t(z,y, z,t) be the density (mass per unit
volume) of a diffusing substance X, and let E be any smalleggibn of the region
where diffusion is occurring. Then the total mass of X witkie subregion is
[[J;CdV,and

S [[zCdV=[[pTe(-n) dA+ [ [ [,qdV

This equation says that the rate of change of the total masgoF is equal to
the netrate at which X is entering from outside plus the rtetawhich X is being
created internally due to sources and sinks. The flux vettepresents the net
flow of X, in mass per unit area per unit time, due to diffusierconvection, and
can be thought of as the denstijtimes the average velocity of the particles. Thus
the dot product of the flux vector with the unit inward normactior (-n) is the
density times the component of the average velocity inwanaligh the boundary,
so the above boundary integral gives the total mass per iomét éntering the
subregionE. q(z,y, z,t) is the net rate, in mass per unit volume per unit time,
that X is being created withi#/, so the second integral on the right gives the total
mass per unit time created (or destroyed) indide

Now if we use the divergence theorem (see the "Review of Mailtate Cal-
culus” link near the bottom of the class web page) we see that

fffE[Ct‘l‘VOJ—q] dV =0

SinceF is an arbitrary, small, subregion, this means that the ratedymust
be zero everywhere.

Now Fick’s Law (9.8 is the 1D version) says that the flux duagotfopic) dif-
fusion is in the direction of most rapid decrease in conegiuin (—V ('), and its
magnitude is proportional to the rate of decrease in thactdon,J = —DVC,
where the proportionality constahl(zx, y, z) is the diffusion coefficient. Using
Fick’s Law, then, our partial differential equation becane

which is (5.30). However, if there also convection, therariadditional flux of X
which is equal to the density times the wind or current vejoeectorv, and then
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the total flux, due to both diffusion and convectionJis- —DVC + C'v, and the
equation becomes

C, =V e[DVC —CV] +¢

Equation (9.30) is a 1D version of this diffusion/convenfre@action equation.
In problem 2, you solved the 1D problem (6.4), which is esaéintthis same
equation, where heat is what is diffusing and convectinglaidg generated.

8.

Problems

a. Now we will solve the steady-state diffusion probler@05(p102),
where the time derivative term is set to zero, in a 3D bulketped
region. The region is a cylinder whose axis is the x-axis, @hdse
radius varies with:: r(z) = 1 for —1 <z < 0andr(x) = cos(m z/2)
for0 <z <1.

Output grid

We will take the diffusion coefficienD = 5, and the source term
will be 1 for z > 0 and zero otherwise. Thus, the diffusing elemént
is being created by a chemical reaction in the forward (nosexhalf
of the bullet, but not in the back half. The rear surface isantact
with another material which has n©@, so the boundary condition at
x = —1 will be ¢ = 0. The rest of the boundary is insulated, so
the normal derivative (see 5.25, p97) is ze%g,: 0, that is, there is
no flux across the sides of the bullet. Solve for the conceatra’
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and calculate the integral @f over the entire bullet, and make some
MATLAB cross-sectional plots of . It is important for good accuracy
to make sure there is a gridline at= 0, where the source termis
discontinuous.

If you need to define any coefficients, such as g, using an lie-sta
ment, remember that you can simply reference a Fortraniumand
supply the function at the end (see function TRUE(X,Y) irenaictive
driver example 2). Alternatively, you can add the IF statetmevhen
prompted right before the coefficient is used (see D(Z) iergttive

driver example 12).
T=1, P2=0.75
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. If this 3D problem is solved in cylindrical coordinatelsat is, ify, z
are replaced by polar coordinates, the solution will obviously not
depend on the polar angle so then 5.30 can be written in the "axi-
symmetric” form (cf. formula 5.24b):

o = vor (1DG) + 3 (DFT) +4
Re-solve the problem of part "a” as a 2D steady-state axirsgtric
problem, using the Galerkin method, and again compute tiegal
of C over the entire bullet (hint: this means you must integtate C'
over the 2D axi-symmetric cross-section). You will of caulgave to
use "y” for ”r”, and again it is important that there be no triges in
the initial triangulation (and thus none in the final triatagion) which
straddle the interface = 0. On the bottom of the region (= 0)

you can use either the boundary condit%‘u = 0 or "no” boundary
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condition. Create a MATLAB surface plot 6f(z, y).

. Finally, re-solve the axi-symmetric problem "b” but novithwvD de-
creased td in the "nose cone” half of the bullet:(> 0) only. Thus
the nose cone and the back half of the bullet are made outfefetiit
materials, diffusion is slower in the nose cone. Recall thatchem-
ical reaction which is creating only occurs in the nose cone. It is
very easy to treat composite materials such as this usinGaterkin
method, one simply defings to be a discontinuous function of posi-
tion. Note thatD(x) is not constant (even though it is piecewise con-
stant) so you cannot take it out of the bracket%ir{D%—g} . However,
Daa—g must be continuous, otherwise its derivative would nottesis
%—g must be discontinuous also, see plot of C below. The coliocat
method cannot handle such problems as easily, because thiput
term in the form required by the collocation method, we wdudste

. 2 . —
to write asDZ$ + 229 and 22 would be infinite atz = 0.
T=1
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