
Derivation of Diffusion Equation

The diffusion equation (5.30) is one of the most important PDE applications,
so let’s see how it is derived. We letC(x, y, z, t) be the density (mass per unit
volume) of a diffusing substance X, and let E be any small subregion of the region
where diffusion is occurring. Then the total mass of X withinthe subregion is
∫ ∫ ∫

E
C dV , and

d

dt

∫ ∫ ∫

E
C dV =

∫ ∫

∂E
J • (−n) dA +

∫ ∫ ∫

E
q dV

This equation says that the rate of change of the total mass ofX in E is equal to
the net rate at which X is entering from outside plus the net rate at which X is being
created internally due to sources and sinks. The flux vectorJ represents the net
flow of X, in mass per unit area per unit time, due to diffusion or convection, and
can be thought of as the densityC times the average velocity of the particles. Thus
the dot product of the flux vector with the unit inward normal vector (−n) is the
density times the component of the average velocity inward through the boundary,
so the above boundary integral gives the total mass per unit time entering the
subregionE. q(x, y, z, t) is the net rate, in mass per unit volume per unit time,
that X is being created withinE, so the second integral on the right gives the total
mass per unit time created (or destroyed) insideE.

Now if we use the divergence theorem (see the ”Review of Multivariate Cal-
culus” link near the bottom of the class web page) we see that

∫ ∫ ∫

E
[Ct + ∇ • J − q] dV = 0

SinceE is an arbitrary, small, subregion, this means that the integrand must
be zero everywhere.

Now Fick’s Law (9.8 is the 1D version) says that the flux due to (isotropic) dif-
fusion is in the direction of most rapid decrease in concentration (−∇C), and its
magnitude is proportional to the rate of decrease in that direction,J = −D∇C,
where the proportionality constantD(x, y, z) is the diffusion coefficient. Using
Fick’s Law, then, our partial differential equation becomes:

Ct = ∇ • [D∇C] + q

which is (5.30). However, if there also convection, there isan additional flux of X
which is equal to the density times the wind or current velocity vectorv, and then
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the total flux, due to both diffusion and convection, isJ = −D∇C+ Cv, and the
equation becomes

Ct = ∇ • [D∇C − Cv] + q

Equation (9.30) is a 1D version of this diffusion/convection/reaction equation.
In problem 2, you solved the 1D problem (6.4), which is essentially this same
equation, where heat is what is diffusing and convecting andbeing generated.

Problems

8. a. Now we will solve the steady-state diffusion problem 5.30 (p102),
where the time derivative term is set to zero, in a 3D bullet-shaped
region. The region is a cylinder whose axis is the x-axis, andwhose
radius varies withx: r(x) = 1 for −1 ≤ x ≤ 0 andr(x) = cos(π x/2)
for 0 < x ≤ 1.
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We will take the diffusion coefficientD = 5, and the source termq
will be 1 for x > 0 and zero otherwise. Thus, the diffusing elementC
is being created by a chemical reaction in the forward (nose cone) half
of the bullet, but not in the back half. The rear surface is in contact
with another material which has noC, so the boundary condition at
x = −1 will be C = 0. The rest of the boundary is insulated, so
the normal derivative (see 5.25, p97) is zero,∂C

∂n
= 0, that is, there is

no flux across the sides of the bullet. Solve for the concentration C
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and calculate the integral ofC over the entire bullet, and make some
MATLAB cross-sectional plots ofC. It is important for good accuracy
to make sure there is a gridline atx = 0, where the source termq is
discontinuous.
If you need to define any coefficients, such as q, using an IF state-
ment, remember that you can simply reference a Fortran function and
supply the function at the end (see function TRUE(X,Y) in interactive
driver example 2). Alternatively, you can add the IF statements when
prompted right before the coefficient is used (see D(Z) in interactive
driver example 12).
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b. If this 3D problem is solved in cylindrical coordinates, that is, if y, z
are replaced by polar coordinatesr, φ, the solution will obviously not
depend on the polar angleφ, so then 5.30 can be written in the ”axi-
symmetric” form (cf. formula 5.24b):
∂C

∂t
= 1

r

∂

∂r

(

rD ∂C

∂r

)

+ ∂

∂x

(

D ∂C

∂x

)

+ q

Re-solve the problem of part ”a” as a 2D steady-state axi-symmetric
problem, using the Galerkin method, and again compute the integral
of C over the entire bullet (hint: this means you must integrate2π r C
over the 2D axi-symmetric cross-section). You will of course have to
use ”y” for ”r”, and again it is important that there be no triangles in
the initial triangulation (and thus none in the final triangulation) which
straddle the interfacex = 0. On the bottom of the region (r = 0)
you can use either the boundary condition∂C

∂r
= 0 or ”no” boundary
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condition. Create a MATLAB surface plot ofC(x, y).

c. Finally, re-solve the axi-symmetric problem ”b” but now with D de-
creased to1 in the ”nose cone” half of the bullet (x > 0) only. Thus
the nose cone and the back half of the bullet are made out of different
materials, diffusion is slower in the nose cone. Recall thatthe chem-
ical reaction which is creatingC only occurs in the nose cone. It is
very easy to treat composite materials such as this using theGalerkin
method, one simply definesD to be a discontinuous function of posi-
tion. Note thatD(x) is not constant (even though it is piecewise con-
stant) so you cannot take it out of the brackets in∂

∂x

[

D ∂C

∂x

]

. However,
D ∂C

∂x
must be continuous, otherwise its derivative would not exist, so

∂C

∂x
must be discontinuous also, see plot of C below. The collocation

method cannot handle such problems as easily, because to putthis
term in the form required by the collocation method, we wouldhave
to write asD ∂2C

∂x2 + ∂D

∂x

∂C

∂x
and ∂D

∂x
would be infinite atx = 0.
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