1.5 Infinite Limits

Definition of Infinite Limits — Let f be a function that is defined at every real number in some open

interval containing c (except possibly at c itself). The statement limx_m f(x) = o0 means that for each

M > 0 there exists a 6 > 0 such that f(x) > M whenever 0 < |x—c

< 0. Similarly, the statement
lim_,_ f(x)=—o0 means that for each N <0 there exists § >0 such that f'(x) < N whenever

0<

x—c| < 0. To define the infinite limit from the left, replace 0 < |x—c| <O0byc—d<x<c.To
define the infinite limit from the right, replace 0 < |x—c| <dbyc<x<c+9o.

Note 1: Having a limit equal to infinity does NOT mean that the limit exists. In fact, it means the limit is
unbounded and therefore does not exist.

Note 2: In WebAssign, if the limit is co you should enter that for your answer and not DNE. There does
not seem to be a great consistency in this however.

Definition of Vertical Asymptote — If f(x) approaches infinity (positive or negative) as x approaches ¢
from the right or the left, then the line x = c is a vertical asymptote of the graph of f(x).

Theorem on Vertical Asymptotes — Let f and g be continuous on an open interval containing c. If

f(c) =0, g(c) =0, and there exists and open interval containing c such that g(x) #0 forall x#c¢

f(x)
g(x)

in the interval, then the graph of the function given by h(x) = has a vertical asymptote at x =c.

Examples: Find the vertical asymptotes, if any.
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Examples: Find the limit, if it exists.

2+x Ta\o\ts oSt CS‘B&\' ;g- ksou cLOr\\\’ Vave oo %ra.‘o\«_

. +
—Y(x\ %d—s \arrse ond ncﬂmL/ve oS Al



g\ \4.o0 \'-(,ool \L{,oool\ 4

. X
2 llmxa4‘ x2+16 SLX\ 0.5123 D'fQ[’L\D,D’UD\ \D-> Doo\ 7
A
\LM X

_— = l rﬂa:s Cou)é, Vg ve lbeen ‘P‘Duﬂé \0\3 eVO\IL/C-.'}‘\rL
_p“_%%—‘ MUCLL 2oSle Lané 2u(\c\<:r\ ]L‘(/LCC\“ waa

3. 1i -2 Sinece &osT{:O) e SL-ouu use oo \'a\a\g
. Iim . | |
—(7/2) cos x X ‘172 Lul\a-l b d"“ﬁ(? Le_f_s cons Lo
~ e q & h l/LSﬂL@CJ
¥(x)\ ? \ 3
Sf(xﬁ:iz =-2seex | VUJ As xa—’—ZJ' The %r&‘f[« of Fix) qffroachg
éoﬁx X= ZF ! 5 -
\\ } ! too, chra(—orr\ l.LVVL 2‘@ = ) oo
\ )‘T X T°
| | xX== >
\ t (

Example: A patrol car is parked 50 feet from a long warehouse. The revolving light on top of the car

turns at a rate of % revolution per second. The rate at which the light beam moves along the wall is
r=507rsec’ @ ft/sec.
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b) Find the rate r when 0 is 1t/3.
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Example: A 25 foot ladder is leaning against a house. If the base of the ladder is pulled away from
25

\625—x7

the house at a rate of 2 feet per second, the top will move down the wall at a rate of » =

ft/sec. where xis the distance between the base of the ladder and the house.

a) Find the rate when xis 7 feet.
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b) Find the rate when xis 15 feet.
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Properties of Infinite Limits — Let c and L be real numbers and let f and g be functions such that

lim_, f(x)=o0and lim_, g(x)=L.
1. Sum o difference: lim_, [ f(x)£g(x)]=
2. Product: lim_, [ f(x)g(x)]=00, L>0
lim [ f(x)g(x)]=—o, L<0

g(x) _
RC

3. Quotient: lim

Similar properties hold for one-sided limits and for functions for which the limit of f(x) as x approaches ¢

is -0,



